a2 United States Patent

Zhang et al.

US009099195B2

US 9,099,195 B2
Aug. 4, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(62)

(60)

(1)

(52)

(58)

HYBRID NANOTUBE/CMOS DYNAMICALLY
RECONFIGURABLE ARCHITECTURE AND
SYSTEM THEREFORE

Inventors: Wei Zhang, Princeton, NJ (US); Niraj
K. Jha, Westfield, NJ (US); Li Shang,

Boulder, CO (US)

Assignee: The Trustees of Princeton University,
Princeton, NJ (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 278 days.

Appl. No.: 13/314,155

Filed: Dec. 7, 2011
Prior Publication Data
US 2014/0059282 Al Feb. 27,2014

Related U.S. Application Data

Division of application No. 12/297,638, filed as
application No. PCT/US2007/009658 on Apr. 19,
2007, now Pat. No. 8,117,436.

Provisional application No. 60/793,665, filed on Apr.
19, 2006, provisional application No. 60/919,225,
filed on Mar. 21, 2007.

Int. Cl1.
HO3K 19/177 (2006.01)
G11C 11/406 (2006.01)
HOIL 51/00 (2006.01)
U.S. CL

CPC G11C 11/40615 (2013.01); HO3K 19/1778
(2013.01); HO3K 19/17752 (2013.01); HO3K
19/17776 (2013.01); HOIL 51/0052 (2013.01)
Field of Classification Search
CPC i HO3K 19/177; HO3K 19/1733
USPC e 326/37-41
See application file for complete search history.

10y

121c4 122.
crasgbar

(56) References Cited
U.S. PATENT DOCUMENTS

4,987,319 A
5,399,922 A

1/1991 Kawana
3/1995 Kiani et al.

(Continued)

FOREIGN PATENT DOCUMENTS

WO
WO

2009002600 A1 12/2008
2009035586 Al 3/2009

(Continued)
OTHER PUBLICATIONS

Rueckes, et al., “Carbon Nanotube Based Non-Volatile random
Access Memory for Molecular Computing”, Science, vol. 289, pp.
94-97, Jul. 7, 2000.

International Search Report from PCT/US07/09658 dated May
2,2008.

Written Opinion from PCT/US07/09658 dated May 2, 2008.

(Continued)

Primary Examiner — Don Le
(74) Attorney, Agent, or Firm — Meagher Emanuel Laks
Goldberg & Liao, LLP

(57) ABSTRACT

A hybrid nanotube, high-performance, dynamically reconfig-
urable architecture, NATURE, is provided, and a design opti-
mization flow method and system, NanoMap. A run-time
reconfigurable architecture is provided by associating a non-
volatile universal memory to each logic element to enable
cycle-by-cycle reconfiguration and logic folding, while
remaining CMOS compatible. Through logic folding, signifi-
cant logic density improvement and flexibility in performing
area-delay tradeoffs are possible. NanoMap incorporates
temporal logic folding during the logic mapping, temporal
clustering and placement steps. NanoMap provides for auto-
matic selection of a best folding level, and uses force-direct
scheduling to balance resources across folding stages. Map-
ping can thereby target various optimization objectives and
user constraints. A high-density, high-speed carbon nanotube
RAM can be implemented as the universal memory, allowing
on-chip multi-context configuration storage, enabling fine-
grain temporal logic folding, and providing a significant
increase in relative logic density.

18 Claims, 26 Drawing Sheets

bits
> _inpuls to MB

B Qutputs
Ot MB

2104
Trossbar

GlLKang
Globa! signate
Reconfiguration

bits

byt LE

.
{7 s o W

Clxand
Globat signals
Reconfiguration
bits

US 9,099,195 B2

Page 2
(56) References Cited 7,656,188 B2 2/2010 Teig et al.
7,667,486 B2 2/2010 Schmit et al.
U.S. PATENT DOCUMENTS 7,669,097 Bl 2/2010 Teigetal.
7,679,401 Bl 3/2010 Redgrave
5,448,496 A 9/1995 Butts et al. 7,694,083 Bl 4/2010 Schmit et al.
5,539,331 A 7/1996 Hatori et al. 7,694,265 B2 4/2010 Rohe et al.
5,914,616 A 6/1999 Young et al. 7,696,780 B2 4/2010 Hutchings et al.
6,009,531 A 12/1999 Selvidge et al. 7,728,617 B2 6/2010 Redgrave et al.
6,249,143 Bl 6/2001 Zaveri et al. 7,737,722 B2 6/2010 Rohe ctal.
6:481,000 B1* 11/2002 Zaverietal. .ccccooococcc. 716/128 7,743,085 B2 672010 Schmit el al.
6,924,663 B2 8/2005 Masui et al. 7,788,478 B2 8/2010 Redgrave et al.
7,109,752 Bl 9/2006 Schmit et al. 7,797,497 Bl 9/2010 Schmit et al.
7,111,224 B1* 9/2006 Trimbergerc........ 714/764 7,804,730 B2 972010 Redgrave et al.
7,126,372 B2* 10/2006 Vadietal. .coccoooovcrcnrr. 326/38 7.816,944 B2 1022010 Hulchings
7,126,381 Bl 10/2006 Schmit et al. 7,825,685 B2 11/2010 Chandler et al.
7145361 Bl 12/2006 Rohe et al. 7,825,687 B2 11/2010 Redgrave
7,157,933 Bl 1/2007 Schmit et al. 7,839,162 B2 112010 Hulchings
7,193,440 Bl 3/2007 Schmit et al. 7,839,166 B2 11/2010 Schmit et al.
7,224,181 Bl 5/2007 Schmit et al. 7,849,434 B2 12/2010 Rohe ctal.
7,224,182 Bl 5/2007 Hutchings et al. 7,870,529 B2 12011 Rohe el al.
7,230,869 Bl 6/2007 Redgrave et al. 7,870,530 B2 12011 Rohe ctal.
7,236,009 Bl 6/2007 Rohe et al. 7,872,496 B2 1/2011 Schmit et al.
7,242,216 Bl 7/2007 Schmit et al. 7,898,291 B2 372011 Rohe el al.
7550587 Bl 82007 Schmit et al. 2004/0095159 AL* 52004 Kimura 326/33
7,262,633 Bl 8/2007 Schmit et al. 2007/0241775 Al 10/2007 Redgrave
7,268,586 Bl 9/2007 Redgrave 2007/0241781 Al 10/2007 Hutchings
7,272,031 Bl 9/2007 Redgrave 2007/0241783 Al 10/2007 Schmit et al.
7,276,933 Bl 10/2007 Teig etal. 2007/0241785 Al 10/2007 Schmit et al.
7,301,242 B2 11/2007 Teig 2007/0244957 Al 10/2007 Redgrave
7,301,368 B2 11/2007 Schmit et al. 2007/0244958 Al 10/2007 Redgrave
7,310,003 B2 12/2007 Hutchings et al. 2007/0244959 Al 102007 Teig et al.
75312,630 B2 12/2007 Rohe et al. 2007/0245270 Al 102007 Teig
7317331 B2 12008 Teig et al. 2007/0245287 Al 10/2007 Rohe et al.
7372297 Bl 52008 Pugh et al 2007/0245288 Al 10/2007 Rohe et al.
7,420,389 B2 9/2008 Schmit et al. 2007/0257700 Al 11/2007 Caldwell et al.
7449915 B2 11/2008 Schmit et al. 2008/0224730 Al 9/2008 Redgrave et al.
7,461,362 Bl 12/2008 Caldwell et al. 2009/0002020 Al 1/2009 Hutchings et al.
7,468,614 B2 12/2008 Rohe et al. 2009/0002021 Al 1/2009 Hutchings et al.
7,489,162 Bl 2/2009 Schmit et al. 2009/0002024 Al 1/2009 Hutchings et al.
7,492,186 B2 2/2009 Hutchings et al. 2009/0007027 Al 1/2009 Hutchings et al.
7,496,879 B2 2/2009 Rohe et al. 2009/0146686 Al 6/2009 Voogel et al.
7,504,858 Bl 3/2009 Schmit et al. 2009/0167345 Al 7/2009 Voogel et al.
7512850 B2 3/2009 Redgrave et al. 2009/0327987 Al 12/2009 Teig et al.
7514957 B2 42009 Schmit et al, 2010/0001759 Al 1/2010 Teig et al.
7,518,400 Bl 4/2009 Redgrave et al. 2011/0060546 Al 3/2011 Miller et al.
7,518,402 B2 4/2009 Schmit et al. 2011/0068820 Al ~ 3/2011 Fox
7521958 B2 4/2009 Hutchings et al. 2013/0275823 Al* 10/2013 Corderoetal. 714/718
7,521,959 B2 4/2009 Teig
7,525,342 B2 4/2009 Teig et al. FOREIGN PATENT DOCUMENTS
7,525,344 B2 4/2009 Teig et al.
7,525,835 B2 4/2009 Redgrave WO 2009039462 Al 3/2009
7,528,627 B2 5/2009 Redgrave et al. WO 2009131569 Al 10/2009
7,529,992 Bl 5/2009 Teig etal. WO 2009151934 Al 12/2009
7,530,033 B2 5/2009 Caldwell et al. WO 2010016857 Al 2/2010
7,532,030 B2 5/2009 Redgrave WO 2010033263 Al 3/2010
7,532,032 B2 5/2009 Schmit et al. WO 2010053590 Al 5/2010
7,535,252 Bl 5/2009 Teig etal. WO 2011035076 Al 3/2011
7,545,167 B2 6/2009 Teig et al.
7,548,085 B2 6/2009 Hutchings et al. OTHER PUBLICATIONS
7,548,090 B2 6/2009 Redgrave et al. Ward, et al., “A Non-Volatile Nanoelectromechan I cal Memory Ele-
7,550,991 B2 6/2009 Redgrave et al. ment Utilizing a Fabric of Carbon Nanotubes”, Nantero, Inc.,
7,557,609 B2 7/2009 Rohe et al. Woburn, MA, (¢) 2004 IEEE, p. 34-38.
7,564,260 Bl 7/2009 Schmit et al. Lai, Current Status of the Phase Change Memory and Its Future, Intel
7,564,261 B2 7/2009 Schmit et al. Corporation, Santa Clara, CA, Dec. 2003, 4 pages.
7,570,077 B2 8/2009 Redgrave Tehrani, et al., “Magnetoresistive Random Access Memory Using
7,573,296 B2 8/2009 Schmit et al. Magnetic Tunnel Junctions”, Proceedings of the IEEE, vol. 91, No. 5,
7,576,564 B2 8/2009 Schmit et al. May 2003, p. 703-714.
7,587,697 Bl 9/2009 Schmit et al. F « . .
7,587,698 Bl 0/2009 Rohe ef al. oX, et al., ”Current and Future Ferroelectric Nonvolatile Memory
7.595.655 B2 9/2009 Hutchings et al. Technology”, J. Vac. Sci. Technol. B 19(5), Sep./Oct. 2001, p. 1967-
7,609,085 Bl 10/2009 Schmit et al. 1971. _ _
7,610,566 Bl 10/2009 Caldwell et al. Zhang, et al., “Nature: A Hybrid Nanotube/CMOS Dynamically
7,616,027 B2 11/2009 Schmit et al. Reconfigurable Architecture”, 30 pages.
7,622,951 B2 11/2009 Schmit et al. Zhang, et al., “Nature: A Hybrid Nanotube/CMOS Dynamically
7,626,419 Bl 12/2009 Schmit et al. Reconfigurable Architecture”, IEEE Design Automation Confer-
7,634,337 B2* 12/2009 Brozovichetal. 701/33.2 ence, Jul. 2006, 30 pages.
7,652,498 B2 1/2010 Hutchings et al.
7,652,499 B2 1/2010 Schmit et al. * cited by examiner

US 9,099,195 B2

Sheet 1 of 26

Aug. 4, 2015

U.S. Patent

l "OId

3004103713
SRR

H34VM NODITIS

d3AV1 3AIXO

S1d0ddNs

\V SNOg8Id 39NLONVN NOdHVO

0oL

U.S. Patent

Aug. 4, 2015 Sheet 2 of 26 US 9,099,195 B2

130 132
Length.y Length-4 134

1 102 wire | wie FPMOWIe syitch box 108

pd
s

» e
asew

A

'{ L

Al ' \
» -~ et - . .
! 132 136 134™. | Connection block Swiich block
P “Length-4 wire Directlink {ong wire ™, \'\ 110 112
/s . ‘
f 3 &E \‘ 7 S1: Switch box between
f z 104 length-1 wires
! X P ;_ { 52: Switch box between
! matrix o] i 108 tength-4 wires
\ 116 re» 114 . .
. / Switch matrix: Local routing
M 116 network
1 1’51

.,

*
“ee Lengtheiwire $30
S L -

— -~
R i

FIG. 2

US 9,099,195 B2

Sheet 3 of 26

Aug. 4, 2015

U.S. Patent

uonesnByuoosy

s)iq e
uogeinbijuosay mw mu_ H_
sjeubs ©qoio sieubis BGO|O
pue 31D pue %10
» Z pr o
Py Z X
2 ¥ N -
EY e B co EY =
4 %
4 -
@ Nl
HEN RN
0 JBQESDIs JBGSSOI sHg
WYHS BY poes FOIZL yo1ZL WYS 8¥
pepnewiS 3 W W 3 | A NEN
- 3 e ®,
N0 -
SINGING § 8 aw o3 sindul
- - 4
g oy BIndul o~ q
R ERX YYYY %
549 Jeqgsson ___irqssomn » suq
AVHS a¥ v o121 TIlvoizi WYNS 8%
P NN J/
- 5T 24
FA
£ o
- o
pd , = r % 1 Wu
]z | v | 2
Y01

811

US 9,099,195 B2

Sheet 4 of 26

Aug. 4, 2015

U.S. Patent

sy
:oﬁ..wmmcouwm UogeINGyY
. suBis ¥ 'Old agmcmw
2Q0ID PUE WD JBQOID PUE WD
e 3
L B4 prd *
= 2 aw T v B 2 [+
1 = % % =
5\\ VN‘
y g
P11 RN
39 i 12GES0ID JBgssiD %G
wves b— 94 0) Y 91 01 g¥ WS
OHOU OIS Q A A A A A A4 A *
ol -
-t 3 xW. 91\ /
SNS IO XUIBW YORmS
SIAIND 26 1o 4
- XUBW UDIMES P w2 \\
“
wod .T:ak Yvvyy o
$Iq Jenssnm __Jegssom - sig
Wods gl 0} g¥ FRA LI R . WS
; u _ ~ Cerens m bz —\ zﬁ
& 81T o
W Sl L] 5
> & 8N 3 ‘: B 1 s
» = 01| = |
£ ol

441

U.S. Patent Aug. 4, 2015 Sheet 5 of 26 US 9,099,195 B2

SMB 114
11¢ 100
& 118 |
MB MB MB MB |J NRAM
One e —— /_‘19 l
input ‘ ,
S Vs Vams Ve
wl .. e
‘,"'—l ; ; ? Length-1 130
64 tracks *~
g,
4 . . . Length-4
. ‘ . }128 tracks 132
Y
“ : - ; > Long wire
. : : : €4 tracks 134
ffb g : < - © Direct link 136
: : 128 tracks
FIG. 5A
sMB 114
118 Ij)ﬂ
MB MB MB mB P | | NRAM
110
Otr;a 2
output -
)))) .

t ength-1 13
684 tracks 0

Length-4
}1 28 tracks 132

Long wire
}64 tracks 134

7
e
1}&—

KREIEIN

B
[EAENE
L

% North direct
; . : 32 tracks 130

o Eas! direct
* 32 tracks 136

FIG. 5B

US 9,099,195 B2

Sheet 6 of 26

Aug. 4, 2015

U.S. Patent

134N
2)BJS-1} JO XMW YOIMG e e -

anm \
wum.w WCDA / .\ khpii
LN rd
8iIM . "
mhm; \ b o O
0L | ybuen
7 aw Neum

QM

Buo Puibusn j-yibua

yel

itl

01

(431

U.S. Patent Aug. 4, 2015 Sheet 7 of 26 US 9,099,195 B2

OO ©

...

I
I
i
x0 x1 x2 x3 yO y1y2 y3 x0x1 x2 x3:
|
i
|
l

— —— T ——— O] D QO ——— — ——— r— To——]—— _—

US 9,099,195 B2

Sheet 8 of 26

Aug. 4, 2015

U.S. Patent

S1INS3H dVIA LINDHID - 1 319VL (210 | 1HVd) 8014

€21] 888%9L | 96°CL 8zl 90'C | 82€66 | ¢SSl #9 ze H3NdILTINW 119-2€
€zl | ziviv | 8p9 79 90¢ | zesvz | 914 3 9l H3ANdILINW 119-91
€21 | 89°€0L | ¥C€ z¢ 90°¢ 8029 88'¢ 9l 8 J3I1dILINW 1I19-8
g3aav
o'l | G006 | 168 GS 8¢ | 08082 | 9¢6 0¢ 9z 103138 AYYVD LI9-%9
J3aav
9%'L | 00%9Z | 08+ GS 822 | ZLOSL | ¥O'S 0¢ vl 1031738 AYYVYD 119-2€
J3aav
o'l | 081SL | 9r2 GG 8¢ 98 882 0g 8 103138 AMYYD 119-91
J30ay avaHy
o'l | 0620€ | S9'LL 4 8¢ | zV6sSL | vzl €l e -MOO1 AYHVD 119-+9
d30av avany
o9y'L | Z¥09L | ZL'9 9z 8¢ vZ ¥8 8¥'9 €l gl -MOO1 AYYVYD 119-2€
J30aav avany
o'l €168 er'e 9z 822 08'9% 09'¢ €l 0l -MOO1 AHHVO 119-91
g3aav
122 298 | 80vL 14 £€C'¢ or'8€ | 076l 4 9 AYYVYD 31ddId Lig-+9
J3aav
122 91'8¢g ¥0'2 2 £e'e 0Z'6l 09'6 r4 ze AHYYD I1ddIY 119-2€
g3aav
122 80Vl zse v gee 096 08'v Z 9l AHHVO T1ddIM 119-91
oc’L | vzesz | 911 vz 89¢ | zaest | w2zl zl e Zniv
0cL | ogeczz | sv2L 3 ZlL | 09°€0lL | 9oc0l 0l gl LINIWAS6
191 912h 8¥'T P 8T 0¥'62 ¥6'C 0l l aal
002 00 +9 00z z€ 8¢ 8% 09 262 vz . LV
z8\ 0¥ 92 0z¢ zl vy'e 6002 187 / / 21a40D
z8'l 0ze 0zz 0l vre €86 182 6 / 84V 10d
8| GE'8¢C €0'C vl vy'e G997 G0'Z €l G ofe)
v0'C Ly vl 3 98¢ G¢ Gl Z G LINYZ
z8l 08’8 0L’} 8 98¢ 096 or'| v v VEILIND
z9| 09°/| oL’} 9 98¢ 9L vl v9'l 6 v 13S
002 00 L1 00} Ll 8¢ ZL6 801 6 3 LN
(zH9) | Av13a | (SN) (zH9) | AVIAa | (SN) Hld3a
‘0344 | xs37 | AVIIA | ST7 'O3Y4 | xs37 | AVIIA | ST1 | HAVHD
ONIAQ104 Z-13AT1 ONIQ104 L-13AT] 1ni 1IND¥ID

US 9,099,195 B2

Sheet 9 of 26

Aug. 4, 2015

U.S. Patent

S1INS3YH dVIN LINDYID - |1 37av.L (210 2 LHVd) 8614

€21 |88%8%9L | 967CL azl 90z | 8z'€66 | 2SSl ¥9 Z< HIdILINW 119-2€
€L | 2lviy | 8r9 ¥9 90’z | zeeve | 9L z< 9l HIIdILINW 11g-91
€C) | 89€0L | vZ€ z¢ 902 8029 88'¢C gl 8 y3INILINN 119-8
g3aav
9%’} | S0'06% 168 GS 827 | 08082 | 9¢6 0¢ 9z 103138 AYYVYD 119-%9
g3aav
9yl | 00%9Z | 08%¥ GS 827 | 2L0GL | ¥0'S 0€ vl 193138 AYMYD 11g-2€
J3aav
9L | 08'LSL | 9.2 GS 812 ¥'98 88'2 0¢ 8 103138 AYYVYD 119-91
¥3aav av3aHy
9%'L | 06208 | GOl 9z 822 | ZL'BSL | veel €l ve -MOOT AYYYD 119-79
g3aav av3aAy
9%'L | 2v09L | 219 9z 812 vZ 8 8¥'9 €l 81 -MOOT AYYYOD 119-2¢
y3aayv avIHy
9| €169 er'e 9z 812 09°9% 09'¢ €l ol -MO0T AYYYD 119-91
J3aav
122 2€9G | 80 ¥l 12 eee 0¥'8€ | 076l Z ¥9 AHHVYD I1ddIY 119-79
J3aav
12¢C 9,82 Y0 4 £e'e 02’6l 09'6 z ze AHHVYO I1ddIY 119-2€
g3aav
122 80V 26'¢ 4 £e'e 09'6 08'¥ 4 9l AYYVYO I1ddIY 11g-91
9L | yzzgz | 9lLl vz 89z | 2S¢SL | Ll Zl X3 ZNv
0C) | 06€cZz | Sv. 0¢ Z.L | 09€0lL | 9c0l 0l P LININASE
19 gL gy vz Il 8cz 0¥'62 62 ol / aal
002 009 002 z¢ 812 8%'09 262 ve . LV
z8') 0¥'92 022 Zl ¥’ 60°02 182 /] 21a40D
Z9'1 0zz 0z¢Z 0l vy’ £€9°GZ 182 6 / 84v10d
8| Ge'8z €0z vl vy'e G99z 602 €l G [o})
Y0z Wy) 3 982 G¢e Gl Z G LNYZ
z8') 088 0L’} 8 98'2 09'G v’ | 4 ¥ VEILND
Z8'1 0921 0L’} gl 98’2 9%l ¥9'| 6 v 138
00'Z 0011 00} Ll 812 Z.'6 801 6 3 LIANd
(zH9) | AV13Q | (SN) (zHo) | AVv13a | (SN) Hld3aa
'OIJY4d | xs371 | AV13A | s3] ‘03U | XS3IT | AVIAA | ST | HAVHED
ONIQTO4 ¢-13AT 1 ONIQTO4 L-13AT] 1n1 1IN2YID

US 9,099,195 B2

Sheet 10 of 26

Aug. 4, 2015

U.S. Patent

SHQ SHQ
uoneinbiyuorsy wvonnbyuooey
speuBis jecolo 6 Old sieubls j2qoiD
pue 3d pug 0D
» =
> w = fp——t
e B e 31 oy] 37 e B
O ovu
L HBEEE HERN i
814 s JBGSEOLY iBgsseI0 aug
WYLS 69 s gougl GOl gl WVHS 69
g o sindy) » A AR ﬂ A AL *)
h‘ n.? ﬁv\.. lf
gpio - v
SINGING § 4 4 g o sndy)
- - . ¥
MEEEINY o
Y YYYY TYyYY «
Sitg - JROSE0ID 1SS0 1 FTS1Q
WVYHS $9 j—t goigl w SoEl el WHHS GO
y [TTT] [T17 y
R &2
prd pd
_ D il e I SR -yd T
II...” W ™ 31 Py * T S . W “..L
e 601
- 1141 —

811

US 9,099,195 B2

Sheet 11 of 26

Aug. 4, 2015

U.S. Patent

Sig
Siq . uopeinbyuaoay
uogeInByu02ey 0L 9l4 seubis |
sipLbis 20D AR 10
201D PUB Y19 w
» -
-
o 4 =Z
Gl W an ooy g £
z % 3 =
' g - -
h N
G
%4 Ly
Bi siq
v
WYHS XN 1Py 02 XAV EXPY 02 HvHS
s + ﬂ b » .
Wok o ”
- s d/
d§
10BULCOIBIL] QF] AR YOUMS
CLINGIND F wol4
- XIeW UOUNG . = ‘ \
wol & yYW ¥ YyYy @ °
s4g g REL 71 iy
: ¥ 02 X0 1XPY 02
WYHS HHV, XOR 1X \ X LS
b\ HII.ZM h\
N M
v . S
) pd
S an .mth o an 2
z : fi] = J
L 0

144!

US 9,099,195 B2

Sheet 12 of 26

Aug. 4, 2015

U.S. Patent

‘g

8Z1
440

dil 'Ol

Al

g

o s~

!

0zt

-

g

871
440

-t

189 WYHS \.\..!& 0zt

L (A

US 9,099,195 B2

Sheet 13 of 26

Aug. 4, 2015

U.S. Patent

an
ja speling

i sy
N r mu _ H_ upnenBjunoay
spRubis peaoiD
A 4 f 3 pue W13
‘ ¢ + —1 t !
iR R N X A I X]
: z :
; , | =
71 [2 n W] 2 n v 2
1 4 *
T] T
Jegssain sg TEGSSDIT) 519 sgqssoln 49
soizs 1 *7 wwas coizt [wews sorzi ™1 s
A 03 Binduy
285010 e Bg380D s 1BG5801Y PEY oy
corst 1 wwus so1zr ™™ mwws Tieorst [T Wves
[R _ , T ~
nv& _vw.w_‘ nw@‘
z z z
1 |l = I]l = EX =
Dy B w1 = bl =
0 _— ,
= \ = 01 1=
@,# LK ik 44 NI X) J
4 i — ‘ %
Y 811

US 9,099,195 B2

Sheet 14 of 26

Aug. 4, 2015

U.S. Patent

=z .
I del 9Old 83
D)
Z ¥ prd
. w.,_w . W
> . Z
&.‘h. T T AT ERE ST - IR,
} c.ﬂ.r.w” N M.
< .m 2
: " T A I SR H e PaiN
:
= 1|
s { Baaaa N T ARRATESL % NI S W S B mum_z
£
2 - 2
G n
£t horms @.%ﬁmfﬁéﬁ% AR e o 3 [y “m N ¥ Nm_\/~
?,..0(: . .
e Aw,fﬁ; TR o S E: mun*l Lain £ m . E = >
= 4 GoiM GG SONMZG) SAM 6 SO ZBL
Ll el ans e MM emm S SRy
24} ‘ ,. e - youms apbuet ppBue feaold Raug
ceoscontsorsoint SAR T S0 ST b IR ok QMM
suuoIsiu} Wﬂﬂ @NM Nmm Vﬂm WMM
SOAM G5 SeNMZel Seamos samgel G IndRO .J
Rew e eim B4M S 701
[Loums uduet pibuesy eged yaoug
peuuBosel 911 11y SR 4% G £ 4| 1141 701
o} Jnaing

US 9,099,195 B2

Sheet 15 of 26

Aug. 4, 2015

U.S. Patent

R
RBULODIBI

oLinsingG

. 1)
.V_\ mu_n_ uopenbiposdy
sjeubls (200
A 'y pue W10
. « 1 — — —+ 1
3’ vy s ¥ XK o ¥ vy
z ; z
> > >
an = an = N Z
..... O@(ﬁ %.(.H [o] %{@
s4q g . sug
E Wvds X LX0% 02 WYHS kﬂ:z 1%08 02 PIYHS
T N Wi
] ot O&A, ot Qa\r o‘m.w

AT PR R

TUYEW YORMS Wi 4

X

I

US 9,099,195 B2

Sheet 16 of 26

Aug. 4, 2015

U.S. Patent

2]
vonemnbluonssy

g
voyeinbyuasey
sjeubiz Qo Gl "9Ol4 sreubls 1o
pue Y10 pue M0
tat -
™ Z | nmindurg) 1 {inyindurg) -
e N e Lo L] O |
z |& cyl » N v =
7 ¢
i
Y [T [T 1] ¢
i g 1BgSS0ID egssald ? siG
NYHS VB et g0l ¥l raydt NVHS 8
g8 01 sindy| ‘a 4444 AAars »)
- 2 2 *®,
Mo -
SIOIND B g g o} synduy
- » e \
o sindyf 7 G
BNOB Ty Yy vy TUYYY
sg : IRGSS0ID ___JegssoR
PWYHS Y} v Oigd Wlsart
\ [T [[111)
& 971 poy &
Z | (L indu-g)] ntindury) _rw z
S riaali o A 2 e
o = |V B 1 I - ™
> w [

811

=
e

US 9,099,195 B2

Sheet 17 of 26

Aug. 4, 2015

=
Py
>
<
8
2 mm “..% R RS i L o S S
—_— mm £ R e e A R R I
o R
. . 74
. . i
[y vﬂﬁ * &V %« w
@NH n wm‘m g .Ut vnnm 43, AL SN e B A R g R
v []
v()m .
o & S - »mw ;
5 ,m = mw R R s R s T R
U" o =
Z31 [; "
N%. i ; SeLMYD SOIMRZL SONM PG SOUM BRI
> 1 137 = xyjew anm Bl am sy}
% ~ UDJiMG Fgbuan wgiuey maolg e J
911 061 L per ggp ¥it

U.S. Patent

L pyp ans

U.S. Patent Aug. 4, 2015 Sheet 18 of 26 US 9,099,195 B2

114
L, MN
S
:l}‘_‘M 118 "
‘ MB Ve
» s MM GUtpU‘i‘S
SN g
N
MBs
ﬁ__ ‘
e MB /M
‘_:D_r——..., #N 7
inputs | |, ‘ g TN
oD
Clock ‘

SMB

FIG. 17

US 9,099,195 B2

Sheet 19 of 26

Aug. 4, 2015

U.S. Patent

a8l 9Old

L 1No

fued

o8l "Old

g-1Bas 1808
\ mﬂa . \ o boq0/ € ajoka
“ ppe efriois m Buipjo}

/ eBs fegne / is'es 2 ejofo
S
/5| ebeiois mwm# \ &> e b\ i/ Buipiol
/ oibe wms\ 18 ‘08 m p
s3I 1 gpha
/e me#\ 10 ppe \ mc_wxs
N

$-1 ebesony

V8l ©Old

P TS 11 e | US— S 1313“!0'*]

i‘——%--e;m(n Buegd—————] l-ﬂ—-w-—-«apﬂe auegd————u}

o
-t

S B I

¥
2 induy { ndui

s 1 [Cos | {2ber] 1B
3

US 9,099,195 B2

Sheet 20 of 26

Aug. 4, 2015

U.S. Patent

uswaoed
jedodwal

Bupnoy

e

R R T AR R R R A e A)

H
3
m
f
w
H
m

PRSI SRR SR]

g oo e e s e ke el M e e

& e

M2 v

18084

¥da pagipow Gusn
uausaeyd 1eu 4

ruawdnid
- Y

sojgenol
WBLIATE]

e
HdA pagipow Busn

piswaneid Bui3

384
15101 HdA Baisn

Bunnol jeuly

;1L «

i qma :on@um%ooou
; ndng

<

B Cwmta S K WS BN I € G SR R A !

i
,
m
;
]
i
)
1

A————y WA A WA LW L MR LWL B L e N b s

A G M B S M A WM AW £ MO S T PP L YR T S s ew v e el b OAS &AM LA ¢ am

-
.
M
¥
}

|
.

SEINS
03 Ja3sng

LIE0T yoea dejy

A nmn Ak e s e s wm

503 busn
SN 1S
JL] YoBS BinpaLos

~-—1~Am'~l~)—1—“-'ﬂ"'*\ﬂ?\‘

inpous 14|

uonendwied
{anof Buipiod

0z »

UOIESS
sepsesed pnsio

{ pompuynday)

R

P L R R R Y

6} Old

Buiasnp

»\\ jerodws]

P . R R A Y

buidden
21607

\\

TRHBASUOD
Jasn
-

aspaelqo

US 9,099,195 B2

Sheet 21 of 26

Aug. 4, 2015

U.S. Patent

ejofo” Buipjoj , paysnes

581040 Jo ‘ON = Kejeq] ® Baly

0¢ 9ld

Z
o g [2510/
aysiesun [BUeld Louspesun
w esly ealy
vwcm_q_

US 9,099,195 B2

Sheet 22 of 26

Aug. 4, 2015

U.S. Patent

dic 9ld viZ 9Ol4

GSNo _

¥ AN

ySnio

2 i\ |EE)
e R \

i X 7snio || [esnp

wmm_o \ _ mwzo _ 4 @ _ y \. _/
njo

/7 [zsnia] [1snp

U.S. Patent Aug. 4, 2015 Sheet 23 of 26 US 9,099,195 B2

LyT Lyt
2 2

FIG. 22A FIG. 22B FIG. 22C

US 9,099,195 B2

Sheet 24 of 26

Aug. 4, 2015

U.S. Patent

dec ol vee 9ld

Y Y
7777777 777777
. Juni

s ¥ ¢ ¢ V0 g ¢ ¥ € 2 | 0

- d D =

a19Ao Buipjo4

oQ obeiols oa 1N7

-— N D =

8}0A0 Buipjo4

U.S. Patent Aug. 4, 2015 Sheet 25 of 26 US 9,099,195 B2

/
L/
/

/&—_'—/—DZ
] f.:
SMB! |
4)
i/ bl
FIG. 24B

SMB
)74
C

&
S
&)

FIG. 24A

US 9,099,195 B2

Sheet 26 of 26

Aug. 4, 2015

U.S. Patent

G2 9l4

I8 005) 597 - ¥31Y pddSY |

0167 [£ [73 0ir - ugney

8291 39 } - €01 Koy penbig

9E 01 Ced] i - - B35y S

¥ 8t 758 il oF - vasy e

o] 201 [- g1l AFR0 Wid

6Lt VE : - - &5 j%a
LD 5378 1231 Buspjog (s3] "uoo Repagy (5T14) 16600 vy GO0 ARy

NOILVZINILHO TVOIdAL d04 S11NS3d ONIddVIN LINOYHIO

[379V1L
X974 b it 807 F X391 969¢ | 001] 0§52 T 03! OvEL b7 2 vddsv
X$T6 OT1E 951 4 XEr ol I5SE 901 i [T 85%1 vl g0p1 ¥z Z uimeg
X£L8 DE bl [l 3 XSl 8251 3] I vE Tl et ¥9 9¢] % { penbig
Xily 901 i ! Xt 9] vyl [53'L 6L) L 7 ! 5iE59
XETL 05 Ly 88 3 PEaa) ¥aRY 9 i 5L 8¢ 69 0ed ¥60 Tz £ >
X6 L 0691 i z X6 6 0581 95] oyl L9 Zl 3.9 44 1 Hid
X£31 09'st) 2 X9 7 0Ll 3 1 061 vre 08 20 %3])
AOIGET 1Y {5} EERT] foAn) wodwy 1y | fsu) STH 1043} &3] I sdoy SIVI¥ | wdsp | seumgy | wnonp
Loy Bmpiog Leagy Suipioy Keraqy dijag aund
(57 =¥) voumepido 1y {4Bnous Y} BoLeIWnas | v Tuipio; oN ey

NOILVZINILdO 10Nd0dHd 1V 04 SLTNS3H ONIddVIN LINDHID

I 379VL

US 9,099,195 B2

1
HYBRID NANOTUBE/CMOS DYNAMICALLY
RECONFIGURABLE ARCHITECTURE AND
SYSTEM THEREFORE

RELATED APPLICATIONS

This application is a divisional application of U.S. patent
application Ser. No. 12/297,638 filed Apr. 9, 2009 (Date of
U.S. Entry) as a 371 application of International Application
No. PCT/US2007/009658 filed Apr. 19, 2007, which claims
benefit of U.S. Provisional Application Ser. Nos. 60/793,665,
filed Apr. 19, 2006, entitled “A Hybrid Nanotube/CMOS
Dynamically Reconfigurable Architecture;” and 60/919,225,
filed Mar. 21, 2007, entitled “NanoMap: An Integrated
Design Optimization Flow for a Hybrid Nanotube/CMOS
Dynamically Reconfigurable Architecture” Each of the
above-identified related applications are incorporated herein
by this reference.

GOVERNMENT RIGHTS

This invention was made with government support under
Grant #CCF-0429745 awarded by the National Science
Foundation. The Government has certain rights in the inven-
tion.

FIELD

This invention relates generally to reconfigurable com-
puter architectures, and particularly to CMOS compatible
field-programmable gate arrays (FPGAs) having non-volatile
universal memories supporting fine-grain reconfiguration to
enable temporal logic folding, along with an RTL/gate-level
automatic design optimization method and system.

BACKGROUND

After consistently providing large improvements in pro-
ductivity and performance for more than two decades, CMOS
is expected to approach its physical limits in the coming
decade. To enable future technology scaling, intensive
research is being directed towards the development of nanos-
cale molecular devices, such as carbon nanotube and nanow-
ire. Such nanodevices demonstrate superior characteristics
over MOSFET in terms of integration density, performance,
power consumption, etc. However, lack of a mature fabrica-
tion process is a roadblock in implementing chips using these
nanodevices. If photo-lithography could be used to imple-
ment structures made from these nanodevices, then such
structures could be combined with CMOS logic to create
hybrid CMOS/nanochips, which could leverage the benefi-
cial aspects of both technologies.

Motivated by the impressive potential of nanotechnolo-
gies, researchers are investigating nanoelectronic circuits and
architectures. If such circuits/architectures are implemented
using bottom-up chemical self-assembly techniques, then the
chip defect levels are expected to be high (between 1% and
10%). To be able to deal with such high defect levels, regular
architectures are favored. Reconfigurable architectures, in
addition to being regular, allow reconfiguration around fab-
rication defects as well as run-time faults. Thus, both regular
and reconfigurable architectures have found popularity.

SUMMARY

The present invention provides a hybrid CMOS/non-vola-
tile universal memory reconfigurable architecture, referred to

20

25

35

40

45

65

2

as NATURE. In one embodiment, the present invention is
based on CMOS logic and high-density high-speed non-vola-
tile nanotube random-access memory. In one instance,
NRAM® of Nantero, Inc., identifies a source of nanotube
random-access memory chips. Nanotube random-access
memory chips can be fabricated using CMOS-compatible
manufacturing processes. Thus, architectures of the present
invention can also be fabricated with currently-available pro-
cesses.

The present invention exploits the excellent properties of
non-volatile universal memories, including NRAM® chips,
and distributes them in a reconfigurable fabric to act as on-
chip storage for multi-context reconfiguration bits. Non-vola-
tile memories include the emerging technologies of carbon
nanotube RAMs, phase change RAMs, magnetoresistive
RAMs, and ferroelectric RAMs (FRAMs). Although certain
illustrated embodiments of the present invention describe
implementation using NRAM® chips, the present invention
is not limited to such use. All alternative emerging non-
volatile technologies could be implemented and are contem-
plated in the present invention.

The logic implemented in the logic elements of the recon-
figurable architecture of the present invention can be changed
every few cycles, making both coarse-grain and fine-grain
dynamic reconfiguration possible. The present invention
thereby addresses two primary challenges in existing CMOS-
based FPGAs: logic density and efficiency of run-time recon-
figuration. Traditional reconfigurable architectures only
allow partial dynamic reconfiguration, (i.e., only a part of the
architecture can be reconfigured at run-time) due to the area
overhead associated with SRAMs that store the reconfigura-
tion bits and the long latency of reconfiguration due to the
accessing of off-chip storage. Since the access latency of
on-chip storage is small, on-chip storage provides an oppor-
tunity to store multiple logic designs in the on-chip storage,
and to invoke different designs through fine-grain dynamic
reconfiguration.

Moreover, the ability to reconfigure the architecture of the
present invention every few cycles provides for temporal
logic folding, (i.e., the possibility of folding the logic circuit
in time and mapping each fold to the same logic elements in
the architecture). This provides significant gains (an order of
magnitude or more for larger circuits) in the area-time prod-
uct (where time refers to circuit delay, or latency) compared to
traditional reconfigurable architectures, while allowing the
flexibility of trading area for performance. For instance, a
large logic circuit can be partitioned into a sequence of logic
stages and stored in the on-chip configuration memory. At
run-time, stage-by-stage, the logic circuit can be configured
into the same hardware and executed in different clock cycles.
Logic folding increases logic elements utilization, providing
high logic density and a capability of using cheaper chips,
having smaller capacities, to execute similar applications,
hence, making them attractive for use in cost-conscious
embedded systems.

In one exemplary realization, the architecture of NATURE
includes island-style logic blocks, connected by a hierarchi-
cal reconfigurable interconnect fabric, where each logic block
contains a super-macroblock (SMB) and a local switch
matrix. The SMB includes a two-level logic cluster. The first
level consists of a set of macroblocks (MBs). Each MB is
composed of a set of logic elements (LEs). Low-latency
reconfigurable crossbars are used to form local inter-MB and
inter-LE connections. In NATURE, LE is the atomic func-
tional element, and includes look-up tables (LLUTs) and flip-
flops. Each m-input LUT can realize any m-variable Boolean

US 9,099,195 B2

3

functions. Flip-flops are used to hold computation results
which are used by subsequent cycles.

In this exemplary realization, support for reconfiguration is
provided by using nanotube random-access memories as on-
chip configuration storage, distributed within each level of
logic and interconnect hierarchy. Each individual logic or
interconnect element is associated with, or physically adja-
cent and connected to, a k-set nanotube random-access
memory storage. Therefore, k different logic functions can be
realized within the same hardware resource without access-
ing oft-chip storage, thereby providing significant improve-
ment in logic density with only moderate area cost and delay
overhead. Also, since logic folding results in most communi-
cation being local, the need for global interconnect is greatly
reduced.

Temporal logic folding enables a realization of different
Boolean functions within the same LE in different clock
cycles. For instance, traditionally a logic circuit consisting of
n serially-connected LUTs requires n LUTs. With the tempo-
ral logic folding support of the present invention, all n LUTs
can be potentially mapped to a single LE, via n configuration
sets stored in a respective nanotube random-access memory.
The subject logic circuit can then be executed cycle-by-cycle
through run-time on-chip reconfiguration.

Different folding levels result in different circuit perfor-
mance and area efficiency. Given a logic circuit, increasing
the folding level leads to a higher clock period, but smaller
cycle count, since a larger number of logic operations need to
be performed within a single clock cycle. Since a constant
latency is associated with each run-time reconfiguration, the
overall circuit latency decreases as the folding level increases.
On the other hand, increasing the folding level can result in
much higher LE resource requirements. Accordingly, design
flexibility is provided, and balancing performance capabili-
ties with area efficiencies is always a consideration.

The present invention also provides an integrated design
optimization platform for NATURE, referred to as NanoMap.
NanoMap conducts design optimization from the RTL down
to the physical level. Given an input design specified in RTL
and/or gate-level VHDL, NanoMap optimizes and imple-
ments the design on NATURE through logic mapping, tem-
poral clustering, placement, and routing. The design optimi-
zation techniques of the present invention exploit the design
flexibilities enabled by fine-grain temporal logic folding.
Given user-specified area and performance constraints, the
mapping method and system of NanoMap can automatically
explore and identify the best logic folding configuration, and
make appropriate tradeoffs between performance and area
efficiency. The present invention uses a force-directed sched-
uling (FDS) technique to balance resource use across differ-
ent logic folding cycles. Combining NanoMap with existing
commercial architectural synthesis tools provides a complete
design automation flow for NATURE.

Accordingly, aspects of the present invention will be seen
variously to:

provide a high-performance non-volatile memory-based

reconfigurable architecture enabling run-time coarse-
grain to fine-grain (i.e., cycle-by-cycle) reconfiguration
and temporal logic folding;

be reliably fabricated using CMOS-compatible manufac-

turing processes;

provide flexibility in achieving different optimization

objectives based upon user specified constraints;
provide flexibility in selecting best temporal folding levels
and to perform area-delay trade-offs;

be capable of reaching LE utilization of nearly 100%;

5

25

30

40

45

60

4

reduce by 50% or more a need for deep interconnect hier-

archy when using level-1 folding;

provide an order of magnitude increase in logic density

relative to current technologies; and

significantly improve area/execution time features of

FPGAs.

In one aspect of the invention, a reconfigurable computer
architecture, or field-programmable gate array, is provided
that includes a plurality of programmable elements and at
least one, separate random access memory associated with, or
physically adjacent and connected to, each programmable
element. The reconfigurable architecture could equally
include a separate random access memory associated with
each ofa plurality of logic elements, or reconfigurable blocks.
The random access memory is a non-volatile memory such as
a carbon nanotube RAM, phase change RAM, magnetoresis-
tive RAM, or ferroelectric RAM (FRAM). The random
access memory can store run-time reconfiguration bits of the
respective programmable element/logic element/reconfig-
urable block, or could store data on-chip, or could store both
run-time reconfiguration bits and data on-chip. Further, data
storage could be distributed across the respective RAM chip.

In a further aspect, n-programmable elements and n-ran-
dom access memories comprise a macro-block (MB),
m-macro-blocks and m-random access memories comprise a
super macro-block (SMB), and one SMB and one local
switch matrix comprise a logic block (LB). A plurality of LBs
could be included in the architecture. In one embodiment of
the invention, the value of m and n is four (4).

In another instance, the reconfigurable architecture could
include a plurality of logic elements; and an equal number of
random access memories, where one random access memory
is physically adjacent and connected to each logic element.
The random access memory stores run-time reconfiguration
bits of the respective logic element. The logic element further
includes two flip-flops, where different computation values
are stored in each of the two flip-flops at any point in time. In
an alternative embodiment, switch blocks replace the logic
elements.

The present invention also provides a method of run-time
reconfiguration, where reconfiguration bits are written into a
first random access memory at a time of initial configuration
from off-chip storage, and reconfiguration bits are placed into
a second random access memory during run-time reconfigu-
ration to configure one or more logic elements or switches to
implement different logic functionality or interconnections.
In one instance, reconfiguration commences at one edge of
clock signal, followed by computation at another edge of the
clock signal. The method could provide that the first random
access memory is nanotube random access memory, and the
second random access memory is a static random access
memory.

In another method of run-time reconfiguration, a series of
n-serially connected look-up tables (LUTI1, LUT2, . . .,
LUTn) are mapped to a logic element (LE), and the LE is
configured to implement LUT1 in a first cycle, to implement
LUT2 in a second cycle, and continuing until configuring the
LE to implement LUTn in nth cycle, wherein n cycles are
needed for execution. Moreover, the LE could be configured
to implement LUT1 in a first cycle, wherein LUT1 is then
executed in the first cycle, the LE is then configured to imple-
ment LUT2 in a second cycle, wherein the LUT2 is then
executed in the second cycle, with the method continuing
until the LE is configured to implement LUTn in nth cycle,
and LUTn is executed in the nth cycle. In certain embodi-
ments, all communications between the LUTs could be local.
As a variation to the method, a second LE could execute a

US 9,099,195 B2

5
LUT in the first cycle using output from the execution of the
first LUT by the LE in the first cycle.

An alternative method maps one or more of a series of
look-up tables (LUTs) to one or more logic elements (LEs),
each LE is configured to implement a LUT in a firstcycle, and
after implementation of two sequential LUT computations,
each LE is reconfigured to implement a LUT in a second
cycle.

In a method for determining a logic folding configuration,
and for balancing resource use across the logic folding con-
figuration, an input circuit design specified in register-trans-
fer level or gate-level VHDL is provided, and a folding level
us determined by: 1) identifying each plane of the input
circuit design; 2) obtaining circuit parameters within each
plane; and 3) and by obtaining a user optimization objective.
The register-transfer level or gate-level VHDL module is then
partitioned into LUTs and LUT clusters, which are then
assigned to a folding stage. The LUTs and LUT clusters are
then mapped to a super-macroblock (SMB), and are then
placed to specific macroblocks (MB) and logic elements
(LE). Intra-SMB and inter-SMB routing is determined, then a
layout generated for each folding stage and a configuration
bitmap for each folding cycle of the reconfigurable architec-
ture.

BRIEF DESCRIPTION OF THE DRAWINGS

For the purpose of illustrating the invention, there is shown
in the drawing(s) a form that is presently preferred; it being
understood, however, that this invention is not limited to the
precise arrangements and instrumentalities shown.

FIG. 1 illustrates structure of a nanotube random access
memory;

FIG. 2 illustrates a high level view of the architecture of the
present invention;

FIG. 3 illustrates an architecture of a lower level macro-
block (MB), in accordance with the present invention;

FIG. 4 illustrates an architecture of a higher level super
macro-block (SMB), in accordance with the present inven-
tion;

FIG. 5a illustrates a connection block for one input of a
MB, and FIG. 55 a connection block for one output from a
MB, in accordance with aspects of the present invention;

FIG. 6 illustrates a switch block in accordance with the
present invention;

FIG. 7a illustrates level-1 temporal logic folding, and FIG.
7b level-2 temporal logic folding, in accordance with aspects
of the present invention;

FIG. 8 illustrates experimental circuit mapping results of
one instance of a reconfigurable architecture of the present
invention;

FIG. 9 illustrates an alternative architecture of a lower level
MB of the present invention;

FIG. 10 illustrates an alternative architecture of a higher
level SMB of the present invention;

FIG. 11a illustrates a logic element (LE) architecture of the
present invention having one flip-flop, and FIG. 1156 illus-
trates another logic element (LE) architecture having two
flip-flops;

FIG. 12 illustrates still another architecture of a lower level
MB of the present invention;

FIG. 13a illustrates a high-level view of a logic block (LB)
architecture where a SMB has 4 MBs, and FIG. 135 illustrates
ahigh-level view of a logic block (LB) architecture where the
SMB has 6 MBs;

FIG. 14 illustrates still another architecture of a higher
level SMB of the present invention;

25

35

40

45

55

65

6

FIG. 15 illustrates a further architecture of a lower level
MB of the present invention, where the number of inputs vary
for any given LUT of each LE;

FIG. 16 illustrates a SMB architecture with one level of
folding in accordance with the present invention;

FIG. 17 illustrates routing about a general SMB structure
including from one to n MBs;

FIG. 18a illustrates an example Register Transfer Level
(RTL) circuit, FIG. 186 a module partition, and FIG. 18¢ a
mapping result thereof, to demonstrate a design optimization
method and system of the present invention;

FIG.19 is a flow diagram illustrating a design optimization
method and system of the present invention, referred to as
NanoMap;

FIG. 20 illustrates delay optimization procedure under area
constraint, assuming across-plane resource sharing, to choose
folding level;

FIG. 21a illustrates an ASAP schedule, and FIG. 215 a
ALAP schedule, for LUTs and LUT clusters in a plane, for
distribution graph (DG) creation during a force-directed
scheduling (FDS) implementation of the present invention;

FIG. 22a illustrates a storage lifetime for the ASAP sched-
ule of FIG. 21a, FIG. 225 illustrates a storage lifetime for the
ALAP schedule of FIG. 215, and FIG. 22c¢ illustrates a maxi-
mum storage lifetime for source distribution computations
during Distribution Graph (DG) creation;

FIG. 23aillustrates a LUT computation Distribution Graph
(DG), and FIG. 235 illustrates a register storage DG for the
ongoing example of FIG. 18, demonstrating a design optimi-
zation method and system of the present invention;

FIG. 24a illustrates clustering, and FIG. 245 placement, in
an example of temporal logic folding in accordance with a
design optimization method and system of the present inven-
tion; and

FIG. 25 illustrates experimental circuit mapping results of
instances of the design optimization method and system of
the present invention.

DETAILED DESCRIPTION

A high-performance run-time reconfigurable architecture
is provided, along with a design optimization method and
system to efficiency balance performance and area consider-
ations of the architecture. A high-density, high-speed non-
volatile memory is implemented in the architecture to enable
cycle-by-cycle reconfiguration and logic folding. Choice of
different folding levels allows the designer flexibility in per-
forming area-performance trade-offs. The significant
increase in relative logic density (more than an order of mag-
nitude for larger circuits) made possible by the present inven-
tion can allow the use of cheaper reconfigurable architectures
with smaller logic capacities to implement the same function-
ality, thus giving a boost to such use in cost-conscious embed-
ded systems.

One embodiment of the invention implements a non-vola-
tile nanotube random-access memory, that is considerably
faster and denser than DRAM, has much lower power con-
sumption than DRAM or flash, has similar speed to SRAM
and is highly resistant to environmental forces (temperature,
magnetism). Use of highly-dense nanotube random-access
memories, such as a NRAM® chip, or of other emerging
non-volatile memory technologies, including Phase Change
RAMs, Magnetoresistive RAMs, and Ferroelectric RAMs
(FRAMs), allows on-chip multi-context configuration stor-
age, thereby enabling fine-grain temporal logic folding of a
circuit before mapping to the architecture.

US 9,099,195 B2

7

Reconfigurable architectures do exist in the art. However,
their teachings are limited to allowing later stages of a pipe-
line to be executed in a same set of logic blocks that executed
an earlier stage of the pipeline. This can be regarded as
coarse-grain temporal folding. However, such architectures
are largely limited to stream media or DSP applications. The
present invention, on the other hand, supports fine-grain tem-
poral folding, and is without the application limitations
present in current reconfigurable architectures. Current
reconfigurable architectures are described in the following,
which is incorporated herein by reference for its useful back-
ground information:

S. C. Goldstein, H. Schmidt, M. Budiu, S. Cadambi, M. Moe,
and R. R. Taylor, “PipeRench: A Reconfigurable Architec-
ture and Compiler,” Computer, vol. 33, pp 70-77, April
2000.

Carbon Nanotube & NRAM® Chips
Carbon nanotubes are hollow cylinders composed of one or

more concentric layers of carbon atoms in a honeycomb
lattice arrangement. The diameter of a nanotube is usually a
few nanometers and length up to millimeters. Nanotubes
exhibit unique electronic, mechanical and chemical proper-
ties. For example, carrier transport in nanotube is ballistic in
the micrometer range and allows current densities as high as
10° A/cm?. These properties of nanotubes make them very
attractive building blocks for molecular electronics.

Carbon nanotube random-access memories are described
in the following, which is incorporated herein by reference
for its useful background information:

J. W. Ward, M. Meinhold, B. M. Segal, J. Berg, R. Sen, R.
Sivarajan, D. K. Brock, and T. Rueckes, “A Non-Volatile
Nanoelectromechanical Memory Element Utilizing a Fab-
ric of Carbon Nanotubes,” in Proc. Non-Volatile Memory
Technology Symp., pp 15-17, November 2004.

FIG. 1 shows a basic structure of a carbon nanotube ran-
dom-access memory 100, such as a NRAM® chip. Memory
cells are fabricated in a two-dimensional array using photo-
lithography. Each memory cell comprises multiple sus-
pended nanotubes, support and electrode. The memory state
is determined by the state of the suspended nanotubes—
whether they are bent or not leads to well-defined electrostati-
cally switchable ON/OFF states. When opposite voltages are
applied to the support and electrode of a memory cell, the
suspended nanotubes are bent due to VanderWals forces,
reducing the resistance between the nanotubes and electrode
to as low as several hundred ohms, corresponding to the “1”
state. On the other hand, when the same high voltage is
applied to the support and electrode, the nanotube remains
straight or returns from the “1” state, resulting in a resistance
of several Gigaohms, which is defined as the “0” state. Such
ON/OFF states have been shown to be both electrically and
mechanically very stable.

Phase Change RAMs, Magnetoresistive RAMs, and Ferro-

electric RAMs (FRAMs)

Phase Change RAMs, Magnetoresistive RAMs, and Fer-
roelectric RAMs (FRAMs) are each respectively detailed in
the following, each of which are incorporated herein by ref-
erence for their useful background information:

S. Lai, “Current status of the phase change memory and its
future,” in Proc. Int. Electron Devices Meeting, December
2003, pp. 10.1.1-10.1.4.;

S. Tehrani, J. M. Slaughter, M. Deherrera, B. N. Engel, and N.
D Rizzo, “Magnetoresistive random access memory using
magnetic tunnel junctions,” Proc. IEEE, vol. 91, pp. 703-
714, 2003,

10

15

20

25

30

35

40

45

50

55

60

65

8
G. R. Fox, F. Chu, and T. Davenport, “Current and future
ferroelectric non-volatile memory technology,” J. Vacuum

Science Technology B., vol. 19, pp. 1967-1971, 2001.
NATURE Architecture

A high-level view of the architecture of the present inven-
tion is shown in FIG. 2. In this embodiment, island-style logic
blocks 102 (I.Bs) are illustrated and are connected by various
levels of interconnect. Several types of wire segments are
used to support local and global communications among
LBs-102. S1 104 and S2 106 refer to switch boxes 108 that
connect wire segments. Connection blocks 110 and switch
blocks 112 are as indicated in FIG. 2. An LB 102 contains a
super-macroblock (SMB) 114 and a local switch matrix 116.
The inputs/outputs of an SMB 114 are connected to the inter-
connection network through a switch matrix 116 and neigh-
boring SMBs 114 are also connected through direct links.
Super-Macroblock (SMB) Architecture

The embodiment of the invention illustrated in FIGS. 2-4
present two levels of logic clusters in an LB 102 to facilitate
temporal logic folding of circuits, and enable most inter-
block communications to be local. The first (i.e., lower) level,
called the macroblock (MB) 118 level, is shown in FIG. 3.

An MB 118 contains n; m-input reconfigurable logic ele-
ments (LEs) 120 (in this figure, n,=4). In the second level, n,
MBs 118 comprise an SMB 114, as shown in FIG. 4 (in this
figure, n,=4). Inthe embodiments illustrated in FIGS. 3 and 4,
each LE 120 and MB 118 is associated with (physically
adjacent and connected to) a nanotube RAM 100, perhaps a
NRAM® chip. Alternative embodiments of the invention
include other emerging non-volatile universal memories,
such as phase change RAMs, magnetoresistive RAMs, and/or
ferroelectric RAMs. Any could be implemented instead of an
NRAM® chip.

Within an MB 118 or SMB 114, communications among
various components can take place through a local crossbar
122. In this embodiment, a crossbar 122 is selected instead of
a multiplexer at this level to speed up local communications.
Since a crossbar 122 requires more SRAM 124 control bits, a
slight price in area is exchanged for faster speed. However,
since logic folding enables significant area savings, this area
penalty is negligible. As shown in FIG. 3, the m inputs ofaLE
120 can arrive from the outputs of other LEs 120 in the MB
118 or from the inputs to the MB 118. Similarly, the inputs of
an MB 118 can arrive from the outputs of other MBs 118 or
from the inputs to the SMB 114 through the switch matrix
116. The outputs (two in this embodiment) from an LE 120
can be used within the MB 118 or can go to the upper level
SMB 114 or go to other SMBs 114 through the routing net-
work. This logic/interconnect hierarchy maximizes local
communications and provides a high level of design flexibil-
ity for mapping circuits to the architecture.

An LE 120 implements a basic computation. The LE 120
can include an m-input look up table (LUT) 126 and a flip-
flop 128 (see FIG. 11(a), detailed below). The m-input LUT
126 can implement any m-variable boolean function. The
flip-flop 128 stores the internal results for future use (when a
circuit is temporally folded, the result of a previous stage is
often needed by a subsequent stage). A pass transistor can be
used to decide if the internal result will be stored or not.
Run-Time Reconfiguration

Run-time reconfiguration is mainly enabled by the carbon
nanotube RAM 100 (or phase change RAMs, magnetoresis-
tive RAMs, or ferroelectric RAMs) distributed throughout
the architecture. The structure and operation of a carbon
nanotube RAM are similar to those of a traditional memory.
One minor difference is that in a carbon nanotube RAM,

US 9,099,195 B2

9

counters can be used instead of decoders as periphery circuits
since reconfiguration bits for different logic contexts are read
out in order.

A carbon nanotube RAM 100 is associated with each
reconfigurable block (e.g., LE 120 or switch block 112, etc.)
to store its run-time reconfiguration bits. Reconfiguration
commences at one edge of the clock signal CLK, followed by
computation at another edge of CLK. Reconfiguration bits are
written into the carbon nanotube RAMs 100 at the time of
initial configuration from off-chip storage. During run-time
reconfiguration, reconfiguration bits are placed into SRAM
124 cells to configure the LE 120 or switch block 112 to
implement different logic functionality or interconnections.
For example, if k configuration sets are stored in a carbon
nanotube RAM 100, then the associated components can be
reconfigured k times during execution. As an example, for the
MB 118 architecture embodiment shown in FIG. 3, 65 recon-
figuration bits are required for a complete configuration set
(when m=4). In this set, 16 bits are required for each 4-input
LUT, and one bit for determining whether to store the internal
result or not. Hence, when n,=4, m=4, and k configuration
sets are used, the total number of carbon nanotube RAM bits
required for one MB is 65kn,.

Inclusion of carbon nanotube RAMs 100 (or phase change
RAMs, magnetoresistive RAMs, or ferroelectric RAMs) in
the LB 102 incurs area overhead. Assuming a 100 nm tech-
nology for implementing CMOS logic, 100 nm nanotube
length, and k=16, the carbon nanotube RAMs 100 occupy
roughly 10.6% ofthe LB 102 area. However, through carbon
nanotube RAM-enabled logic folding, the number of LBs 102
required to implement a circuit is reduced nearly k-fold. To
account for these facts, the concept of relative logic density is
introduced, and is defined as the ratio of the amount of logic
that architectures of the present invention can implement in a
given amount of area compared to the amount of logic a
traditional reconfigurable architecture can implement in the
same amount of area. When k=16 and assuming the circuit
being implemented can use 16 configurations (as most large
circuits would), the relative logic density can be calculated as
16(1-0.106)=14.3. This means that in the same area, archi-
tectures of the present invention can implement roughly 14
times more logic than a traditional architecture, or equiva-
lently needs 14 times less area to implement the same func-
tionality.

It can be seen that both the carbon nanotube RAM size and
relative logic density vary with the value of k. If k is too small,
more global communication may be needed. Ifk is too large,
it may not be possible to make use of the extra configurations,
thus leading to wasted carbon nanotube RAM area that could
have been put to other use. Since the best k value varies with
the specific design, the value of k can be obtained through a
design optimization technique, NanoMayp, introduced below,
or through design space exploration of the architecture with
various values of k and mapping a large number of circuits to
that instance of the architecture. In many instances, k=16 is a
preferred value.

To further improve the performance of the architecture at
the expense of increased area, one can use a shadow recon-
figuration SRAM to hide the reconfiguration latency for
transferring bits from the carbon nanotube RAMs to the
SRAMs. This allows one group of SRAM bits to load recon-
figuration bits from nanotube NRAMs, while another SRAM
group supports the current computation. The performance
improvement due to this feature will depend on the level of
logic folding.

20

40

45

50

55

10

Interconnect Design

Reconfigurable interconnect resources are provided in
reconfigurable architectures to enable communication
between programmable [.Bs 102. Interconnect design is very
important for reconfigurable architectures because routing
delays can be quite large, and most of the chip area is devoted
to programmable routing. Consequently, the routing architec-
ture must be designed to be both fast and area-efficient, and to
aid logic folding and local communication.

There are primarily two methods for providing both local
and global routing resources: segmented routing and hierar-
chical routing. One embodiment of the present invention uses
a hybrid of segmented and hierarchical routing. In this
embodiment, within the SMB 114, the interconnect is hierar-
chical to aid the logic clusters and local communication. To
connect SMBs 114, wire segments of various lengths are
used. In segmented routing, short wires accommodate local
traffic. Such wires are connected together using switch boxes
to emulate long wires.

The following routing architecture features address an
interconnect structure of the present invention:

The length of each routing wire segment (i.e., how many

LBs a routing wire spans before terminating);

The number of wires (tracks) in each routing channel;

The type of each routing switch: pass transistor, tri-state

buffer or multiplexer (MUX);

Location of routing switches and which routing wires they

connect; and

Size of transistors in the switches and the metal width and

spacing of the routing wires.

For the length of each routing wire segment, since too
many short wires decrease circuit performance, and too many
long wires provide little routing flexibility and may waste
area, one embodiment of the present invention implements a
mixed wire segment scheme including length-1 130, length-4
132, and long wires 134. Length-1 130 (length-4 132) wire
segments span one (four) LB(s) 102 before connecting to a
switch block 112, while long wires 134 traverse the chip
horizontally and vertically, connecting to each LB 102 along
the way. Besides these wire segments, there are also direct
links 136 from the outputs of one LB to its four neighboring
LBs, further facilitating local communications.

To address the number of wires (tracks) in each routing
channel, for the architecture instance in which m=n,=n,=4,
1=64, and O=32 (where 1/O refers to the number of inputs/
outputs of an SMB), one embodiment of the invention imple-
ments 128 horizontal and vertical tracks and assume a 25%,
50%, and 25% distribution for length-1 130, length-4 132,
and long wires 134, respectively, among the 128 tracks in
each direction. In addition, 32 tracks are used for direct links
136 between adjacent SMBs (since O=32). FIG. 5 illustrates
one embodiment of how the inputs/outputs of an SMB 114 are
connected to the routing network.

Next is a consideration of the design of the connection
block 110, characterized by F_., and switch block 112, char-
acterized by F_ (F, refers to the number of adjacent tracks a
pin of an LB can connect to and F, the number of tracks to
which each track entering the switch block can connect).
Higher values of F_ and F| result in higher routing flexibility,
however, at the expense of a higher number of switches and
hence more routing area. For a cluster of N LUTs, F_ can be
chosen as 1/N of the total number of tracks and F, should be
greater than three in order to achieve routing completion
while maintaining area efficiency. In one embodiment of the
invention, F_=1/N and F,=6 is used. Another related and
important issue is whether or not the internal connection
blocks or switch blocks should be populated (such a block is

US 9,099,195 B2

11

said to be populated if it is possible to make connections from
the middle of the block to LBs or to other blocks). When both
are fully populated, the number of routing tracks required to
achieve routing completion can be reduced, at the expense of
a larger number of switches attached to a wire (resulting in
more capacitance and, hence, decrease in speed). In one
embodiment of the invention, the connection blocks are
depopulated and the switch blocks are populated to provide
the best performance-area advantage. FIG. 6 shows an
example connection of disjoint switch blocks 112.

The third feature considers the type of switch. There are
typically three types of switches: pass transistor, multiplexer
and tri-state buffer. Since a pass transistor has the shortest
switching time, pass transistors are implemented in one
embodiment of the invention for the local crossbars within the
MB and SMB. A multiplexer has longer delay, but needs
fewer reconfiguration bits. Therefore, a multiplexer 138 is
implemented in one embodiment of the invention to connect
to the inputs ofa SMB 114 (e.g., see FIG. 10, detailed below).
The outputs of an SMB can be connected to long intercon-
nects through tri-state buffers in the switch matrix.

For the last feature, one embodiment of the invention uses
pass transistors that are 10 times the size of a minimum-sized
transistor and five times the size of a minimum-sized transis-
tor for tri-state buffers and multiplexers. Minimum width and
spacing are used for the metal wires.

Temporal Logic Folding

Temporal logic folding provides design flexibility and ben-
efits in the present invention. The basic idea behind logic
folding is that one can use run-time reconfiguration, and in
one embodiment of the invention nanotube RAM-enabled
run-time reconfiguration, to realize different Boolean func-
tions in the same LE every few cycles. For example, suppose
a subcircuit can be realized as a series of n serially connected
LUTs. Traditional reconfigurable architectures will need n
LUTs to implement the subcircuit. However, using run-time
reconfiguration, at one extreme all these LUT's can be mapped
to a single LE, which is configured to implement LUT1 in the
first cycle, LUT2 in the second cycle, and so on, requiring n
cycles for execution. Traditional reconfigurable architectures
only support partial dynamic reconfiguration and do not allow
such fine-grain temporal logic folding. Moreover, all commu-
nications between the LUTs mapped to the same LE are local.
Hence, global communication is reduced, and routing delay is
significantly reduced as well.

Logic folding occurs at the expense of reconfiguration
time. However, results reveal that the time required to output
the reconfiguration bits from an carbon nanotube RAM to the
SRAM (i.e., the reconfiguration time to switch from one LUT
to another), is only around 160 ps. This is small compared to
routing delay saved. Also, by allowing use of shadow SRAM,
the reconfiguration time can be hidden by overlapping com-
putation.

Logic folding can be performed at different levels of granu-
larity, providing flexibility to enable area-performance trade-
offs. As an example, consider the LUT graph (in which each
node denotes a LUT) shown in FIG. 7(a), which denotes
level-1 folding. Such a folding implies that the LEs are recon-
figured after the execution of each LUT mapped to it. On the
other hand, FIG. 7(b) shows level-2 folding, implying recon-
figuration of the LE after execution of two LUT computa-
tions. A level-p folding can be similarly defined. The case of
no folding corresponds to mapping of circuits to a traditional
reconfigurable architecture in which spatial partitioning of
the LUT graph is feasible, but not temporal folding.

There are various trade-offs involved in the choice of the
folding level. First, when the folding level is large, the cycle

10

25

40

45

12

period increases because a larger amount of computation is
executed in one cycle. The number of LEs needed also
increases since they are not fully time-shared. However, the
total number of cycles decreases. This fact coupled with the
reduction in reconfiguration time may reduce total circuit
delay. However, this would generally be true when commu-
nications between LEs are still local in the folded circuit,
usually within the range of several SMBs. If the area required
for implementing the subcircuit is out of this range and long
global communication is required in one cycle, then a small
folding level may give better performance.

Another important advantage of logic folding occurs when
the circuit is too large to fit into a traditional reconfigurable
architecture; it could then be mapped into the architecture of
the present invention with logic folding. In a situation where
the number of available LEs is limited, factors considered for
obtaining the best folding level may differ from those men-
tioned above. In such a case, the number of cycles required to
execute the whole computation will be dependent on the
number of computation nodes in the LUT graph divided by
the number of available LEs. Hence, the best folding level
might be one that best uses the available LEs. A smaller
folding level will use LEs less efficiently, and require more
cycles, while a larger folding level will increase the cycle
period and result in time inefficiencies.

Experimental Results-NATURE

Various MCNC benchmarks and arithmetic circuits illus-
trate the benefits of the run-time reconfiguration and logic
folding features of the present invention. Architectures of the
present invention present a family of carbon nanotube RAM-
based (and phase change RAM-based, magnetoresistive
RAM-based, and ferroelectric RAM-based) reconfigurable
architectures at different levels of granularity in terms of the
number of LEs inan MB (n,), number of MBs inan SMB (n,,),
number of inputs per LE (m), number of configuration sets
stored in the NRAM (k), etc. Accordingly, different architec-
ture instances may be best suited for different circuit types.
Since it appears that a cluster of four 4-input LUTs provides
one of the best area-delay trade-offs, one embodiment of the
present invention (for experimental purposes) uses an archi-
tecture instance corresponding to n,=4, n,=4, and m=4.
Parameter k is varied in order to compare implementations
corresponding to selected folding levels: level-1, level-2,
level-4 and no logic folding (note that the number of carbon
nanotube RAM bits increases as we go from no folding to
level-4 folding and towards level-1 folding since the number
of LE configurations increases).

Several small/middle sized benchmarks were manually
mapped to the underlying architecture instance. The depth of
the circuit LUT graph, number of LEs, circuit delay, product
of number of LEs and delay (this is a proxy for the area-time
product, which is reasonable since the present invention is a
regular architecture), and frequency are shown, for different
levels of folding, in Table I of FIG. 8. These results are based
on 100 nm CMOS technology parameters.

Area/performance trade-offs that become possible because
of use of logic folding are observed. Consider the 64-bit
ripple-carry adder. Its LUT graph has 64 LUTs on the critical
path. Using level-1 logic folding, the complete adder can be
mapped to only two LEs. This, of course, requires reconfigu-
ration of the LEs from the local carbon nanotube RAMs at
each cycle. If more LEs are allowed (as in level-2, level-4 and
no folding cases), the execution time goes down because
fewer reconfigurations are required (note that, in this
instance, the presence of a shadow SRAM is not assumed to
overlap the reconfiguration and computation times of an
LE—ifassumed, the execution time for level-1 folding would

US 9,099,195 B2

13

go down by roughly 1.6.times. at the expense of a doubling of
SRAM area). Traditional reconfigurable architectures will
require 128 LEs for such an adder (some architectures incor-
porate a carry generation circuit with each LE; in such a case,
they will require 64 LEs although each LE will be larger due
to the carry generation circuit overhead) because they cannot
perform any temporal logic folding. As the number of
required LEs increases, the need for using higher-level (i.e.,
more global) interconnects to connect them also increases.
This is one of the reasons traditional reconfigurable architec-
tures are not competitive with ASICs in terms of performance.

Next, consider the area-time product. For larger, more seri-
ally-connected circuits of larger depth, the area-time product
advantage of level-1 folding relative to no folding is typically
larger. For example, for the 64-bit ripple-carry adder, it is
observed that the advantage is about 34.times. This results
from a large saving in area while maintaining competitive
performance.

Table I of FIG. 8 also illustrates that the present invention
can operate at high frequency. Peak frequency is around 3.3
GHz. From level-1 folding to no-folding, the frequency
decreases because increasingly more computation is included
in one cycle period.

In spite of the fact that traditional reconfigurable architec-
tures devote a vast majority of their area to interconnects, their
LE utilization may not be high (an extremely large number of
routing tracks may be needed to approach 100% LE utiliza-
tion). Because of the cycle-by-cycle reconfiguration features
of' the architecture of the present invention, the LE utilization
and relative logic density can be very high, with a reduced
need for a deep interconnect hierarchy. Thus, architectures of
the present invention suggest an evolutionary path for exist-
ing reconfigurable architectures, where fewer levels of inter-
connect hierarchy will be used and the area saved can provide
for distribution of emerging non-volatile universal memories,
such as carbon nanotube RAMs, throughout the chip.

A Discussion of Some Alternative NATURE Architectures

As discussed, NATURE can be characterized along a large
number of varying dimensions, all of which are contemplated
in the present invention. A non-exclusive list of exemplary
characterizations are: 1) number of logic elements (LLEs) per
logic block; 2) number of inputs per LE; 3) size of carbon
nanotube RAMs supporting each LE (this determines the
granularity of reconfiguration); 4) depth of the FPGA inter-
connect hierarchy (localized communications can help dras-
tically reduce this depth); 5) mix of different types of inter-
connects (much fewer longer interconnects are necessary); 6)
number of registers per LE (because of the success of logic
folding in reducing the number of LEs required for imple-
menting the combinational logic by an order of magnitude,
implementing sequential blocks now becomes the bottleneck
for further area reduction); etc.

For instance, as an extension of the high level architecture
view of FIG. 2, consider an alternative embodiment SMB 114
architecture, as illustrated in FIGS. 9 and 10. The alternative
SMB 114, in this embodiment, again includes two levels of
logic. The first (i.e., lower) level, called the macroblock (MB)
118, is shown in FIG. 9. The MB 118 contains n, reconfig-
urable LEs 120 (in this embodiment, n,=4). A 13 to 5 crossbar
122 is used to speed up the local communication. In the
second (i.e., higher) level, n, MBs 118 comprise an SMB 114,
as shown in FIG. 10 (in this embodiment, n,=4). In this SMB
114, since many reconfiguration bits are necessary to config-
ure a full crossbar 122, a multiplexer 138 is instead used for
local communication. This architecture facilitates temporal
logic folding of circuits and enables most inter-block com-
munications to be local.

10

15

20

25

30

35

40

45

50

55

60

65

14

In the FIGS. 9 and 10 embodiments, the inputs of an MB
118 can arrive from other MBs 118 or the switch matrix 116.
Similarly, the inputs of an LE 120 can arrive from other LEs
120 or MBs 118 or the switch matrix 116. The outputs from an
LE 120 can be used within the MB 118 or go to the upper level
SMB 114 or go to other SMBs 114 through the switch matrix
116.

The inputs to the LE 120 include m inputs to a look-up table
(LUT) 126 and one to a flip-flop 128, as shown in FIG. 11(a).
In this embodiment, m=4. The flip-flop 128 can store the
computation result from the LUT 126 (when a circuit is
temporally folded, the result of a previous stage is often
needed by a subsequent stage), or the value of a primary input.
This gives the flexibility of storing a LUT computation result
in the flip-flops 128 of other LEs 120. The m-input LUT 126
can implement any m-variable Boolean function.

To realize cycle-by-cycle logic reconfiguration capability,
an carbon nanotube RAM 100 is again associated with each
reconfigurable block (i.e., LE 120 or crossbar 122), to store
the run-time reconfiguration bits. During reconfiguration, the
reconfiguration bits are placed in the SRAM 124 cells to
reconfigure the LE 120 or crossbar 122 to implement different
logic functionality and interconnections. For example, if k
configuration sets are stored in the carbon nanotube RAM
100, then k different logic functions can be realized within the
same hardware resource without the need to access off-chip
storage. For the MB 118 architecture shown in FIG. 9, 82
reconfiguration bits are required for a complete configuration
set (when m=4). In this set, 16 bits are required for each
4-input LUT, and one bit for determining whether to store the
internal result or not. Hence, when n,=4, m=4, and k configu-
ration sets are used, the total number of carbon nanotube
RAM bits required for one MB 118 is 82kn,. A detailed
layout and SPICE simulation show that a 16-set carbon nano-
tube RAM storage (i.e., k=16) introduces 10.6% area over-
head with 160 ps on-chip reconfiguration time (i.e., the access
latency of on-chip carbon nanotube RAM). Using this setup,
the logic density is improved by 14.times. on average. In
addition, logic folding constrains most communication to be
local, which greatly reduces the need for global interconnect.

As a basis for relative discussions concerning other alter-
native NATURE architectures, the embodiment of FIGS. 9,
10 and 11(a) will be hereinafter referred to as the baseline
design. That is, as detailed below, the baseline design
describes an FPGA instance where the number of inputs per
LE m=4, number of LEs per MB n,=4, and number of MBs
per SMB n,=4, one LUT and one flip-flop per LE, and number
of reconfiguration sets k=16.

Number of LEs n,; per MB: Changing the value of n, leads
to area-delay trade-offs. For example, consider n,=6, as
shown in the exemplary embodiment of FIG. 12. This con-
figuration leads to larger crossbars 122 within the MB 118,
and a larger carbon nanotube RAM 100 to reconfigure it since
more LE 120 outputs need to be connected to the crossbars
122. At the same time, more LEs 120 in an MB 118 increases
the number of outputs from the MB 118. This also results in
increases to both the size of the input multiplexers 138 to the
MB 118, and the amount of interconnects associated with the
MB 118, as shown in FIG. 13(a). In all, the area of an SMB
increases by 1.9.times. for n,=6, compared with n,=4. Thus,
relative area per LE goes up by 1.9/1.5=1.27 times. The level
of folding desired in a given application, and other area-delay
constraints, will determine whether the increase in relative
area per LE is advantageous.

Number of MBs n, per SMB: Varying n, will also result in
area/delay trade-offs. Increasing n, allows more logic to be
implemented in an SMB 114, and more local communica-

US 9,099,195 B2

15

tions between MBs 118 within the SMB 114. Hence, circuit
delay may be reduced. However, the area of the SMB 114 will
increase correspondingly. Consider the case of n,=6, as
shown in the exemplary embodiment of FIG. 14, and for
which the high-level LB 102 view is shown in FIG. 13(5).
Since there are 1.5 times more MBs, and the MB architecture
is unchanged, the number of outputs of the SMB increases by
1.5 times, in turn resulting in a 1.5 times increase in the
number of interconnect tracks necessary to connect all the
SMB outputs while maintaining the same F_ as the baseline
design. Consequently, the size of the switch matrix will also
increase since the inputs of the SMB will be selected from
more interconnect tracks. When n, increases from four to six,
the area of the LB again increases to 1.9.times, and relative
area per LE increases by 1.9/1.5=1.27 times. Depending on
the particular application, and respective level of folding, the
corresponding reduction in circuit delay would need to be
evaluated against the above-identified increase in relative
area to determine if this embodiment is desirable.

Number of inputs m per LUT: The number of inputs m for
each LUT is a very important consideration for any FPGA
architecture. If m is too large, and the application cannot
always make use of all the inputs of each LUT, area is wasted.
If m is too small, a larger number of LUTs are required and,
therefore, more MBs, SMBs and more interconnect commu-
nications. For example, if m=>5, the SMB area increases to
1.25 times. In an instance where most LUTs only require four
inputs, the mapped number of SMBs remains nearly the
same. Hence, the mapped area increases by 1.25 times. How-
ever, random logic (such as a controller) may benefit from a
larger m. Because of the ability of FPGAs in the present
invention to implement temporal logic folding, the value of m
most suitable to conventional FPGAs may not be the same as
in the present invention. Further, depending on the applica-
tion, and desired folding level, the present invention contem-
plates that different inputs can exist for any given LUT 126 for
each LE 120 of a MB 118. An exemplary embodiment is
shown in FIG. 15.

Number of flip-flops per LE: Since temporal logic folding
may reduce the combinational logic by more than an order of
magnitude, the number of registers in the circuit may now
become the bottleneck of further area reduction. Thus, as
opposed to traditional LEs that include only one flip-flop, the
present invention includes embodiments having more flip-
flops per LE to further reduce the number of LEs required.
However, if the inputs to the flip-flops are separately
accessed, the number of inputs/outputs of an LE will increase
as the number of flip-flops in an LE increases. Then, as
discussed above, the communication network within and out-
side the SMB may grow very fast due to the increase in the
number of inputs/outputs per LE, MB and SMB. Hence, the
SMB size may increase significantly. If flip-flops in each LE
are not used efficiently, area may be wasted.

For example, assume two flip-flops 128 per LE 120 as
shown in FIG. 11(b). The input for each flip-flop 128 is
distinct in this embodiment, providing that different values
are stored in each of the two flip-flops 128 at the same time.
This arrangement results in an increase: 1) in the size of the
crossbar 2 in an MB 118; in the size of the input multiplexer
138 in an SMB 114; and 3) in the number of inputs to each
SMB 114. The area of the SMB thereby increases by 1.5
times.

In an instance of level-1 folding with configuration sets
k=16, significant area savings were realized (i.e., reduced
number of LEs). However, increasing the number of flip-flops
to three per LE could result, in the same instance, in an area

10

15

20

25

30

35

40

45

50

55

60

65

16

increase. Since area saving depends on the value of k, simul-
taneously consideration of these two parameters are neces-
sary.

Number of reconfiguration sets k: The value of k deter-
mines the amount of logic folding possible. If k is too small,
more LEs are needed to perform a mapping. If'k is too large,
use of the extra configurations may not be possible, thus
resulting in wasted carbon nanotube RAM area that could
have been put to other use. Complicating this fact is that the
best value of k varies with a change in the optimization
objective (e.g., area, delay or area-delay product).

Number of logic levels per SMB: In the baseline design,
two levels of logic are used in an SMB (i.e., SMB—MB and
MB—LE) to facilitate local communication. However, since
any communication between two LEs in different SMBs has
to traverse two levels of interconnect, the communication
delay is larger compared with that within just one level of
logic. In addition, a two-level logic structure requires more
implementation area than a one-level logic structure. Hence,
a one-level structure has an advantage in area and inter-SMB
delay, but a disadvantage in intra-SMB delay. FIG. 16 shows
the structure of a flattened SMB 114 with one level of logic.
Aninput ofan LE 120 is now directly selected from the inputs
from the switch matrix 116 and the outputs of other LEs 120.
In the FIG. 16 embodiment, area is reduced by 1.1 times.

Interconnect parameters: In the carbon nanotube RAM-
based FPGAs of the present invention, inter-LLE communica-
tions become much more local. Hence, the interconnect hier-
archy can be sharply reduced. Currently, the baseline sets
F_=W/N and F =6, where N is the number of LEs in an SMB
and W is the number of interconnect tracks per channel. A
larger F_and F can provide more routing flexibility, but at the
cost of more routing area. The values for F_and F can also be
varied to achieve an optimal trade-off between routability and
area efficiency.

Moreover, in most embodiments of the present invention,
every input in the SMB 114 is accessible from the intercon-
nect, with full routability within an SMB 114. However,
complete routability within an SMB 114 may not be neces-
sary. BothT and M (see FIG. 17) could potentially be reduced
while keeping LE usage high, to thereby reduce the size of
input multiplexers 138 in an SMB 114. Since multiplexers
138 contribute most to the area of an SMB 114, multiplexer
size could result in a reduction in the size of an LB 102. For
example, if [=0.6 and M=1 (i.e., full routability assumed
within the SMB), the size of the LB 102 reduces to 76%.
NanoMap Design Optimization

The present invention also provides an integrated design
optimization platform for NATURE, referred to as NanoMap.
NanoMap conducts design optimization from the RTL down
to the physical level. Given an input design specified in RTL
and/or gate-level VHDL, NanoMap optimizes and imple-
ments the design on NATURE through logic mapping, tem-
poral clustering, placement, and routing. The design optimi-
zation techniques of the present invention exploit the design
flexibilities enabled by fine-grain temporal logic folding.
Given user-specified area and performance constraints, the
mapping method and system of NanoMap can automatically
explore and identify the best logic folding configuration, and
make appropriate tradeoffs between performance and area
efficiency. The methods of the present invention can be imple-
mented as software running on a general-purpose computer,
such as an INTEL® PENTIUM® based personal computer
running a MICROSOFT® WINDOWS® operating system,
although the invention is not limited to that particular imple-
mentation.

US 9,099,195 B2

17

To demonstrate the design optimization flow of NanoMap,
an example RTL circuit 140 will be provided, and concepts
associated therewith are first introduced for ease of exposi-
tion. Given an RTL circuit 140, the registers contained therein
are first levelized. The logic between two levels of registers is
referred to as a plane. The registers associated with the plane
are called plane registers. The propagation cycle of a plane is
called plane cycle. Using temporal logic folding, each plane is
further partitioned into folding stages. Resources can be
shared among different folding stages within a plane or across
planes. The propagation cycle of a single folding stage is
defined as folding cycle. Note that different planes should
consist of the same number of folding stages to guarantee
global synchronization. Thus, the key issue is to determine
how many planes are folded together and to determine the
appropriate folding level (i.e., the number of folding stages in
one plane necessary to achieve the best area-performance
tradeoff under specified design constraints).

FIG. 18(a) shows an example comprising a four-bit con-
troller-datapath consisting of a single plane. The controller
consists of flip-flops s0 and s1, and LUTs LUT1-LUT4. The
datapath consists of registers regl-reg3, a ripple-carry adder
and parallel multiplier module, requiring in all 100 LUTs and
14 flip-flops. The ripple-carry adder consists of eight LUTs
with a logic depth (i.e., the number of LUTs along the critical
path) of four. The parallel multiplier consists of 38 LUTs with
a logic depth of seven. The control logic consists of four
LUTs. Suppose the optimization objective is to minimize
circuit delay under a total area constraint of 20 LEs. We
assume each LE contains one LUT and two flip-flops. Hence,
20 LEs equal 20 LUTs along with 40 flip-flops. Since the
number of available flip-flops is more than required, we con-
centrate on the LUT constraint.

The present invention uses an iterative optimization flow.
As a smaller number of folding stages leads to better perfor-
mance, NanoMap starts with a guessed folding level, result-
ing in a minimal number of folding stages under the given
area constraint, and gradually refines it. In the FIG. 18
example, the minimal number of folding stages is equal to the
total number of LUTs divided by the LUT constraint, 150/
201=3 (i.e., at least three folding stages are required to meet
the LUT constraint). The folding level is obtained by the
maximum logic depth divided by the number of folding
stages, which equals 14+7/31=4.

Next, based on the chosen folding level, the adder and
multiplier modules are partitioned into a series of connected
LUT clusters in a way that if the folding level is p, then all the
LUTs at a depth less than or equal to p in the module are
grouped into the first cluster, all the LUTs at a depth larger
than p but less than or equal to 2p are grouped into the second
cluster, and so on. The LUT cluster can be considered in its
entirety with its logic depth being less than or equal to the
folding level. This implies that one LUT cluster can be
executed within one folding cycle, thereby being contained in
one folding stage. By dealing with LUT clusters instead of a
group of single LUTs, the logic mapping procedure can be
greatly sped up. FIG. 18(5) shows the partition for the mul-
tiplier module 142 with level-4 folding. However, note that
the first LU1 cluster of the multiplier already needs 32 LUTs,
exceeding the area constraint. Thus, the folding level has to be
further decreased to level-2 to guarantee that each LUT clus-
ter can be accommodated within the available LEs. Corre-
spondingly, the number of folding stages increases to six.

Next, after choosing a suitable folding level, Force Direc-
tive Scheduling (FDS) is used to determine the folding cycle
assignment of each LUT and LUT cluster to balance the
resource usage across the six folding stages. If the number of

20

40

45

55

18

LUTs and flip-flops required by every folding stage is below
the area constraint (i.e., 20 LEs) the solution is valid and
offers the best possible performance. Otherwise, the folding
level is reduced by one, followed by another round of opti-
mization. This process continues until the area constraint is
met, assuming the area constraint can be satisfied.

FIG. 18(c¢) illustrates the mapping result 144 for level-2
folding for the first three folding stages of the total of six
folding stages. Note that plane registers, which provide inputs
to the plane, need to exist through all the folding stages in the
plane. The first folding cycle requires 14 LEs. Four LEs are
required for mapping LUT cluster 1 of the adder, which is
depicted as add: c1 in FIG. 18(c). Flip-tlops sO and sl are
mapped to the available flip-flops inside the LEs assigned to
adder cluster 1. Four LEs are also required for LUT1-LUT4
computation, and to store the respective computation results.
The four-bit registers, reg1, reg2 and reg3, need two LEs each
to accommodate their four flip-flops. Similarly, in folding
cycle 2, four LEs are needed for adder cluster 2 computation
and resulting storage. Four LEs are required for maintaining
the LUT1-L.UT4 computation results, which need to be pre-
served until folding cycle 6 to control the loading of registers,
and six LEs for regl-reg3. Folding cycle 3 requires the maxi-
mum number of LEs, since multiplier cluster 1 needs 16
LUTs, which occupy 16 LEs. The number of LEs needed by
the last three folding levels (not shown), are 16, 12 and 12,
respectively. Hence, the number of LEs for mapping this RTL
circuit is the maximum required across all the folding cycles
(i.e., 16). This is within the area constraint.

Next, clustering, which groups LEs into SMBs, placement
and routing are performed to produce the final layout of the
implementation and obtain the best possible circuit delay
under the given constraint. When performing clustering,
inter-stage relationships are honored, since some computa-
tion results need to be preserved through several folding
cycles. Once the results are assigned to some flip-flops in an
SMB, they are not assigned to other SMBs in other folding
cycles. In the FIG. 18 example, assume there are four LEs in
an MB and four MBs in an SMB. Thus, the 14 LEs in folding
cycle 1 can be accommodated into one SMB. Suppose LUT1-
LUT4 are assigned to MB1. Then their computation results
storage 1-4 will be present in MBI through all the folding
cycles before being overwritten by new results.

Automated Optimization Flow of NanoMap

FIG. 19 illustrates an integrated design optimization flow
for NATURE. Given an input design 201 specified in mixed
RTL and gate-level VHDL, NanoMap conducts logic map-
ping, temporal clustering, temporal placement and routing,
and produces a configuration bitmap for NATURE.

Logic Mapping: (Steps 202-206) Steps 202-206 of F1G. 19
use an iterative approach to identify the best folding level
based on user-specified design constraints, optimization
objectives, and input circuit structure. FDS techniques,
detailed below, are used to assign LUTs and LUT clusters to
folding stages and balance inter-folding stage resource usage,
and to produce the LUT network of each temporal folding
stage.

Temporal Clustering: (Steps 207-208) Steps 207-208 of
FIG. 19 take the flattened LUT network as input, and cluster
the LUTs into MBs and SMBs to minimize the need for global
interconnect, and to simplify placement and routing. As
opposed to the traditional clustering problem, each hardware
resource (i.e., LE, MB, or SMB) is temporally shared by logic
from different temporal folding stages. Temporal folding
necessitates that both intrastage and inter-stage data depen-
dencies be jointly considered during LUT clustering. Folding
stages need not be limited to one plane; temporal clustering

US 9,099,195 B2

19

can span planes. After clustering, verifying satisfaction of the
area constraint is performed. If the area constraint is satisfied,
placement is invoked. Otherwise, NanoMap returns to logic

mapping.

Temporal Placement: (Steps 209-214) Steps 209-214 of 5

FIG. 19 perform physical placement and minimize the aver-
age length of inter-SMB interconnects. Physical placement
and interconnect minimization is implemented on top of
VPR, an FPGA place-and-route tool, detailed and referenced
below, to provide inter-folding stage resource sharing. Place-
ment is performed in two steps. First, a fast placement is used
to derive an initial placement. A low-precision routability and
delay analysis is then performed. If the analysis indicates
success, a detailed placement is invoked to derive the final
placement. Otherwise, several attempts are made to refine the
placement and if the analysis still does not indicate success,
NanoMap returns to logic mapping.

Routing: (Step 215) Step 215 of FIG. 19 uses the VPR
router to generate intra-SMB and inter-SMB routing. After
routing, the layout for each folding stage is obtained and the
configuration bitmap generated 216 for each folding cycle.

The following details the above steps. For logic mapping,
focus is provided on folding level determination and FDS
technique.

Choosing the Folding Level

The folding level choice is critical to achieving the best
area-performance tradeoff. As previously noted, the best fold-
ing level depends on input circuit structure, obtained by iden-
tifying each plane and obtaining the circuit parameters within
each plane. The following outlines the necessary circuit
parameters:

Number of planes in input circuit: num_plane
Number of LUTs in plane i: num_LUT,

Logic depth of plane i: depth,

Maximum number of LUTs among all the planes:
LUT_max=max(num_LUT,) fori=1, ..., num_plane
Maximum logic depth among all the planes:
Depth_max=max{depth,} for i=1, . . . num_plane

Area constraint, e.g., the available number of LEs: availa-
ble LE

Number of reconfiguration copies in each carbon nanotube
RAM: num_reconf

Given the specified optimization objective and constraint
(e.g., circuit delay minimization under area constraint or area
minimization under delay constraint, etc.), the best folding
level is computed using above parameters. The following
details a targeting of one of the design objectives. Similar
procedures can target other objectives.

Suppose the optimization goal is to minimize circuit delay.
Ifthere is no area constraint, we can use no-folding to obtain
the shortest delay. If an area constraint is given, it is satisfied
first, then the best possible delay obtained. There are two
scenarios considered:

1) Multiple planes are allowed to share resources: Since cir-
cuit delay is equal to plane cycle times the number of planes
in the circuit, plane cycle has to be minimized under the area
constraint. First, all the planes together are stacked (i.e.,
resources are shared across all planes, since this does not
increase circuit delay but reduces area). Suppose the area
used up at this point is LUT_max. If LUT_max is larger than
available_LE, logic folding is required to reduce the area
within each plane. The minimum required number of folding
stages within each plane is given by:

25

30

35

40

45

20

LUT_max] (9]

#folding stages= [m

Since the number of folding cycles should be kept the same
in each plane, maximum logic depth is used to compute the
folding level:

depth_max 2)

folding level= m

Using the chosen folding level, the present invention uses
FDS and temporal clustering to obtain the area required. If the
area constraint is not satisfied, the folding level is decreased
by one. NanoMap then iterates until the area constraint is met
or the folding level reduces to the minimum allowed,
min_level, which is limited by num_reconf:

depth_max#num_plane

. 3
min_level=
num_reconf

FIG. 20 illustrates the optimization procedure.

2) Multiple planes are not allowed to share resources: Such a
scenario is possible if the RTL circuit is pipelined and, hence,
the different pipeline stages need to be resident in the FPGA
simultaneously. In this scenario, temporal logic folding can
only be performed within each plane. Then the folding level
requested can be directly computed by the following equa-
tion:

depth_max#available_LE)

folding level= Z num LUT,

After an appropriate folding level is chosen, the RTL. mod-
ule is partitioned into LUT clusters accordingly. The original
mixed module/LUT network is transformed to an equivalent
LUT/(LUT cluster) network which is fed to FDS.
Force-Directed Scheduling (FDS)

Different folding stages share the same set of LEs tempo-
rally. Overall LE use is then determined by the folding stage
using the maximum number of LEs. To optimize overall
resource use in each plane, a modified Force-Deflected
Scheduling (FDS) method is implemented to assign the LUT
or LUT cluster to folding stages and balance the resource use
of the folding stages.

Force-Deflected Scheduling (FDS) is described in the fol-
lowing, which is incorporated herein by reference for its
useful background information:

P. G. Paulin and J. P. Knight, “Force-Directed Scheduling for
the Behavioral Synthesis of ASIC’s,” IEEE Trans. Com-
puter-Aided Design, vol. 8, pp. 661-679, June 1989.

FDS is a popular scheduling technique in high-level syn-
thesis. However, the present invention uses FDS in another
scenario. FDS uses an iterative approach to determine the
schedule of operations, to minimize overall resource use. The
resource use is modeled as a force. The scheduling of an
operation to some time slot, which results in the minimum
force, indicates a minimum increase in resource use. The
force is calculated based on distribution graphs (DGs), which
describe the probability of resource use for a type of operation
in each time slot.

US 9,099,195 B2

21

In the present invention, since the LE use in each folding

cycleis dependent on both the LUT computations and register
storage operations conducted in parallel, two DGs must be
assembled: one describing the resource use of the LUT com-
putation; and another for register storage use. The following
details: 1) how DGs are created; and 2) how forces are cal-
culated based on the two created DGs.
1) Creation of DGs: First, to build the LUT computation DG,
the time frame of each LUT or LUT cluster needs to be
determined. For a LUT or LUT cluster i, its time frame
time_frame,, or feasible time interval, is defined as the span
from the folding cycle it is assigned to in the ASAP schedule
to the folding cycle it is assigned to in the ALAP schedule.
From the ASAP/ALAP schedules shown in FIG. 21 for the
ongoing example, we can see that time frame; .2 spans
folding cycles 1 to 3. Here, clus, denotes LUT cluster i. If a
uniform probability distribution is assumed, the probability
that this computation is assigned to a feasible folding cycle j
within its time frame equals 1/Itime_frame, for
jetime_frame,.

Following a definition similar to that given by P. G. Paulin
and J. P. Knight, above, a LUT computation DG models the
aggregated probability distribution of the potential concur-
rency of N LUT/(LUT cluster) computations within each
folding cycle j, whose value LUT_DG(j) is the sum of the
probabilities of all the computations assigned to this folding
cycle, as follows:

N 5
. 1 . -
LUT_DG{j) = él m «weight;, je time_frame

where weight, is one for a LUT and equal to the number of
LUTs ina LUT cluster.

To build the register storage DG, which models the distri-
bution of register storage usage, a procedure similar to that of
P. G. Paulin and J. P. Knight, above, is adopted. A storage
operation is created at the output of every source computation
that transfers a value to one or more destination computations
in a later folding cycle. If both the source and destinations of
a storage operation are scheduled, the distribution of the
storage operation equals its lifetime, which begins from the
folding cycle of the source and ends at the folding cycle of the
last destination. Here, itis assumed the results are stored at the
beginning of each folding cycle. If one or more of the source
or destinations are not scheduled, a probabilistic distribution
is obtained.

The following heuristic is used to quickly estimate the
resulting storage distribution. First, ASAP_life and ALA-
P_life of a storage operation are defined as its lifetime in the
ASAP and ALAP schedules, respectively. For example, in
FIG. 22, the output of source computation LUT2 is denoted as
storage S. S transfers the value to destination computation
LUT3 and LUT4. In the ASAP schedule, S begins at folding
cycle 2 and ends at folding cycle 3. Hence, ASAP_life ~[2, 3]
and the length of ASAP_life: IASAP_life|=2. Similarly, in
the ALAP schedule, S begins at folding cycle 4 and ends at
folding cycle 4, which results in IALAP_life l=1.

The longest possible lifetime max_life for the storage
operation is the union of its ASAP_life and ALAP_life,
whose length is obtained as:

Imax_lifel=(4LAP_life end-ASAP_life_begin+1) (6)

For the ongoing example, S begins in folding cycle 2 in the
ASAP schedule (i.e., ASAP_life_begin=2). Its lifetime ends

20

30

35

40

60

65

22
in cycle 4 in the ALAP schedule (i.e., ALAP_life_end ~4).
Thus, the length of the maximum lifetime for S (e.g.,
Imax_lifeg=3).
If ASAP_life overlaps with ALAP_life, the overlap time,
overlap, is the intersection of ASAP_life and ALAP_life,
whose length is similarly obtained as:

loverlap |=(4SA4P life end-ALAP life begin+1) (7

Within the overlap time, a storage operation must exist
with probability 1. For the example, there is no overlap time
for S. Then an estimate of the average length of all possible
lifetimes can be obtained by:

|ASAP_lifd + |ALAP_lifd + |max_lifd
3

8
avg life= ®

Next, the probability of a storage operation performed for
aLUT or LUT cluster computation i in folding cycle j can be
calculated as follows:

when j is outside of overlap, and jemax_life;:

avg_life — |overlap;|

®

storage;() = wweight

|max_life| —|overlap]|

when j is within overlaps, which means a storage operation
must be performed:

storage,(j)=weight; (10)

The process is carried out for all the storage operations, and
the separate probabilities due to N LUTs and LUT clusters in
folding cycle j are added to obtain a single storage DG as
follows:

storage_ DG(j)=2,_Nstorage;(j)jemax_life, (11)

The two DGs obtained for the example in FIG. 21 are
shown in FIG. 23.

2) Calculation of Forces: In the FDS algorithm, force is used
to model the impact of scheduling operations on resource use.
A higher force implies higher concurrency of run-time opera-
tions, which requires more resources in parallel. The force is
calculated based on DGs, which present the probability of
resource usage concurrency. For a given computation with
time frame spanning folding cycles a to b, the force in cycle j
is calculated by:

force(7)=DG({)*x(j) (12)
where DG(j) is either LUT_DG(j) or storage_DG(j) in our
case, and x(j) is the increase (or decrease) in the probability of
computation in cycle j due to the scheduling of the computa-
tion. For example, before scheduling, the computation has a
uniform probability of being scheduled in each folding cycle
in its time frame. If in a scheduling attempt, the computation
is scheduled in folding cycle .alpha., the probability of the
computation being scheduled in folding cycle a will increase
to 1 and the probability of the computation being scheduled in
other folding cycles will decrease to 0. The self-force associ-
ated with the assignment of a computation i, whose time
frame spans folding cycles a to b, to folding cyclej is defined
as the sum of all the resulting forces in each folding cycle in
its time frame:

US 9,099,195 B2

23

b (13)
self__foree(f) = Z force(k)

k=a

b

=DG()xx(p+ y. IDGEK)xx(h)
k=ak#j

jela, bl
Ny [time_frame| — 1
D= e frama
x(k) = _71
[time_frame|

In the approach of the present invention, the resource use
can be dictated by either LUT computations or storage opera-
tions. Assume there are h LUTs and 1 flipflops in one LE, then
the self-force for scheduling a LUT or LUT clusteriin folding
cycle j is determined by

14

LUT _self_force;(j) storage_self force(j)
max{ h R 7 }

where LUT_self force,(j) and storage_self force,(j) are
computed using Equation (13) based on the LUT computa-
tion and storage DGs.

Assigning a LUT computation to a specific folding cycle

will often affect the time frame of its predecessors and suc-
cessors, which in turn creates additional forces affecting the
original move. Equation (13) is used to compute the force
exerted by each predecessor or successor. The overall force is
then the sum of the self-force and the forces of predecessors
and successors. Then the total forces under each schedule for
a computation are compared and the computation is sched-
uled into the folding cycle with the lowest force, which will
result in the least concurrency.
3) Summary of the FDS algorithm: The pseudo-code of the
proposed FDS technique is shown in Algorithm 1. Algorithm
1 uses an iterative approach to schedule one computation in
each iteration. In each iteration, the LUT computation and
register storage DGs are obtained. The LUT or LUT cluster
with the minimum force is chosen, and assigned to the folding
cycle with the minimum force. This procedure continues until
all the LUT or LUT cluster computations are scheduled.

10

15

20

25

30

35

40

24

SMBs. To construct each SMB, an unpacked LUT with the
maximal number of inputs is first selected as an initial seed.
Then, new LUTs with high attractions to the seed LUT are
chosen and assigned to the SMB. The attraction between a
LUT i and the seed LUT, Attraction, ., depends on timing

criticality and input pin sharing [17], as follows:

Nets; seed (15)

Attraction; sgeq = @ # Criticality, + (1 —) #

and as described in the following, which is incorporated
herein by reference for its useful background information:
S. Marquardt, V. Betz, and J. Rose, “Using Cluster-Based

Logic Blocks and Timing-Driven Packing to Improve

FPGA Speed and Density,” in Proc. Int. Symp. FPGA,

February 1999, pp. 37-46.

In Equation 15, Criticality models the timing criticality of
LUT i (e.g., the number of critical paths that this LUT is on),
Nets, .., is the number of shared I/Os between these two
LUTs, and G is the number of I/Os per LE. a is a parameter
that allows a tradeoff between timing criticality and intercon-
nect demand.

To support temporal logic folding, inter-folding stage
resource sharing needs to be considered during clustering.
Since due to logic folding, several folding stages may be
mapped to a set of LEs, some of the LEs may be used to store
the internal results and transfer them to another folding cycle.
Such LEs may perform this job over several cycles and feed
other LEs in each folding cycle. As illustrated in FIG. 24(a),
in an earlier folding cycle, two LUTs may have very few
attractions between them (C and D in FIG. 24(a)), but may
have a large number of attractions in a later cycle. When
performing temporal clustering, the attractions of two LUTs
over all the cycles need to be accounted for. Thus, the attrac-
tion of such a LUT is set to the maximum of its attractions
over all the cycles.

Placement and Routine

In the present invention, placement and routing is per-
formed by a modified VPR. VPR refers to the techniques of
the following, which is incorporated herein by reference for
its useful background information:

V. Betz and J. Rose, “VPR: A New Packing, Placement and

Routing Tool for FPGA Research,” Proc. Int. Wkshp.

FPGA, August 1997, pp. 213-222.

Algorithm 1 - Force-Directed Scheduling (FDS)

1: for LUT/(LUT cluster) computations to be scheduled do

2: evaluate its time frame using ASAP and ALAP scheduling

3: create the LUT computation distribution graph and storage operation
distribution graph

4: for each unscheduled LUT/(LUT cluster) computation i do

5: for each feasible clock cycle j it can be assigned to do

6: calculate the self-force of assigning node i to cycle j

7: add predecessor and successor forces to self- forces to get the

total force for node i in cycle j

8: end for

9: select the cycle with the lowest total force for node i

10: end for

11: Pick the node with the lowest total force and schedule it in the selected
cycle

12: end for

Temporal Clustering

Placement uses a two-step simulated annealing approach.

After scheduling, a network of LUTs is assigned to each 65 Placement starts with a fast low-precision placement.

folding stage. For each folding stage, we use a constructive
algorithm to assign LUTs to LEs and pack LEs into MBs and

Routability analysis and delay estimation are then used to
evaluate the quality of the initial placement. For routability

US 9,099,195 B2

25

analysis, a highly-efficient empirical estimation technique is
used, as described in the following, which is incorporated
herein by reference for its useful background information:
C. L. E. Chang, “VRISA: Accurate and Efficient Placement

Routability Modeling,” in Proc. Int. Conf. Computer-

Aided Design, November 1994, pp. 690-695.

The routing demand for the interconnect resources for
horizontal and vertical channels, D,>""2" and D -vertical,
each net k is estimated as:

pterional _ o, (16)

~<| o=

i vertical _
Dy =

| —

q*

where (X,Y) are the dimensions of the net bounding box for
netk, and q is a pin-count dependent net-weight, as detailed in
C. L. E. Chang. The sum of the demands of all the nets is then
compared to the per-channel routing resources of NATURE
to make sure the resources are adequate. Delay estimation is
based on the timing analysis step of VPR. Routability analysis
and delay estimation results are then used to evaluate the
feasibility of the initial placement, which determines whether
a high-precision placement or another round of logic folding
should be invoked.

VPR placer was modified in the present invention to sup-
port temporal logic folding. Such temporal folding introduces
inter-folding stage dependencies. Consider the example in
FIG. 24(b). In folding cycle 1, since there are few connections
between C and D, they may be placed far apart. However,
such a placement would not be good for folding cycle 2 in
which C and D communicate a lot. The Manhattan distance is
computed between each pair of SMBs belonging to different
temporal folding stages. The net bounding box in other
unplaced cycles are estimated using this Manhattan distance
and added to the cost function for the current cycle to guide
placement. Routing is conducted in a hierarchical fashion,
first using length-1, then length-4 and finally global intercon-
nects (i.e., the three types of interconnects in NATURE,
above). Note that a length-i interconnect spans i SMBs.
Experimental Results—an Instance of NATURE Using
NanoMap

Presented here are experimental results for the mapping of
seven RTL/gate-level benchmarks to an instance of NATURE
using NanoMap to illustrate the benefits of run-time recon-
figuration and logic folding. NATURE is a family of archi-
tectures, which may vary in the number of inputs and registers
in an LE, number of LEs in an MB, number of MBs in an
SMB, etc. In this experimental instance, an architecture hav-
ing one four-input LUT in an LE, four LEs in an MB, and four
MBs in an SMB, are selected to obtain good area-delay trade-
offs. Observations show that temporal logic folding greatly
reduces the area for implementing logic, so much so that the
number of registers in the design becomes the bottleneck for
area reduction. Thus, as opposed to traditional LEs that
include only one register, the present invention, in this
example, includes two registers per LE, which increases an
SMB’s area to 1.5 times (all experiments are based on a 100
nm technology). However, the LE area increase is more than
offset by the significant reduction in overall area. To fully
explore the potential of logic folding, we assume that a vary-
ing number of reconfiguration sets, k, is available in carbon
nanotube RAMs depending on the application. We also show
the tradeoffs when the size of carbon nanotube RAM is
instead fixed to 16.

10

15

20

25

30

35

40

45

55

60

65

26

Among the seven benchmarks targeted, ex1 is the circuit
shown in FIG. 18, but with a bit-width of 16. Paulin is a
differential-equation solver, and FIR and Biquad are two
types of digital filters. ASPP4 is an application-specific pro-
grammable processor. ¢5315 is a gate-level ALU implemen-
tation from the ISCAS’85 benchmark suite. NanoMap was
run on a 2 GHz PC with 1 GB of DRAM under RedHat Linux
9. The mapping CPU times were less than a minute for all the
benchmarks.

First, all benchmarks were mapped under the area-time
(AT) product minimization objective to show the logic den-
sity benefits of temporal logic folding against the traditional
no-folding case. Table II of FIG. 25 shows the mapping
results. The first five columns describe the benchmark name
and structure. Columns 6 and 7 of Table I1 of FIG. 25 show the
number of LEs required and circuit delay for the no-folding
case. Columns 8 and 12 show the best folding level estab-
lished by the present invention, NanoMap, for AT product
optimization without and with limitations on k. AT product
optimization is achieved with folding level-1 in all the cases
when there is no restriction on k, since an increase in circuit
delay is more than overcome by the dramatic reduction in area
when using level-1 folding.

The corresponding area (where the number of LEs is used
as a proxy for area due to the regular architecture), circuit
delay and AT product improvement with respect to the no-
folding case for examples without and with limitations on k
are shown in Table II—Columns 9-11 and 13-15, respec-
tively. The average reduction in the number of LEs is 14.8
times (9.2 times) and in the AT product 11.0times (7.8 times),
at the price of a 31.8% (19.4%) increase in circuit delay for
large enough k (with k limited to 16).

Accordingly, the present invention can target many differ-
ent optimization objectives: (i) minimization of circuit delay
with or without an area constraint; (ii) minimization of area
with or without a delay constraint; (iii) minimization of the
AT product; and (iv) finding a feasible implementation under
both area and delay constraints.

Different optimization objectives for different benchmarks
are selected, with results presented in Table I1I. Objectives are
noted in Column 2 of Table III of FIG. 25, and the constraint
(i.e., area or delay) is noted in Columns 3 and 4 of Table III.
Table I1I of F1IG. 25 illustrates the versatility of NATURE and
NanoMap. Further, a significant side-benefit of area reduc-
tions made possible by logic folding is the associated reduc-
tion for a deep interconnection hierarchy in NATURE. Since
cycle-by-cycle reconfiguration makes LE utilization very
high, the need for global communication greatly reduces.
Global interconnect use was reduced by more than 50% when
using level-1 folding as opposed to no-folding, due to trading
interconnect area for increased carbon nanotube RAM area in
NATURE.

CONCLUSION

The present invention presents a hybrid nanotube/CMOS
dynamically reconfigurable architecture, NATURE, and an
RTL/gate-level automatic design optimization flow,
NanoMap, for the NATURE reconfigurable architecture.
NATURE supports run-time fine-grain reconfiguration and,
hence, enables temporal logic folding. Through logic folding,
significant logic density improvement and flexibility in per-
forming area-delay tradeoffs are possible.

NanoMap incorporates temporal logic folding during the
logic mapping, temporal clustering and placement steps.
NanoMap provides for automatic selection of a best folding
level, and uses force-direct scheduling to balance resources

US 9,099,195 B2

27

across the different folding stages. Mapping, as provided by
the present invention, can target various optimization objec-
tives and user constraints. With NanoMap, the potential of
NATURE can be effectively realized.

These and other advantages of the present invention will be
apparent to those skilled in the art from the foregoing speci-
fication. Accordingly, it will be recognized by those skilled in
the art that changes or modifications may be made to the
above-described embodiments without departing from the
broad inventive concepts of the invention. It should therefore
be understood that this invention is not limited to the particu-
lar embodiments described herein, but is intended to include
all changes and modifications that are within the scope and
spirit of the invention.

What is claimed is:

1. A reconfigurable computer architecture, comprising:

a plurality of logic elements; and an equal number of ran-
dom access memories, one random access memory
being associated with each logic element, wherein four
logic elements and four respective random access
memories comprise a macroblock (MB) and wherein
four MBs are arranged to comprise a super-macroblock
(SMB) and wherein each of the four MBs are associated
with a respective random access memory.

2. The architecture of claim 1, further comprising a cross-
bar with each logic element and respective random access
memory to provide communication between components.

3. The architecture of claim 1, wherein inputs for each logic
element arrive from outputs of logic elements in the macro
block or the inputs to the macro block.

4. The architecture of claim 1, further comprising a cross-
bar with each macroblock and respective random access
memory to provide communication between components of
the super-macroblock.

5. The architecture of claim 1, wherein inputs of a macrob-
lock arrive from outputs of other macro blocks or inputs to the
super-macroblock.

6. The architecture of claim 1, wherein outputs from a logic
element are used within the respective macroblock, are trans-
mitted to the super-macroblock, or are transmitted to other
super-macroblocks through a routing network.

7. The architecture of claim 1, wherein the random access
memory is a carbon nanotube random access memory.

8. The architecture of claim 1, wherein the random access
memory is selected from the group consisting of phase
change random access memory, magnetoresistive random
access memory, and ferroelectric random access memory.

15

20

30

40

45

28

9. The architecture of claim 1, wherein the random access
memory stores run-time reconfiguration bits of the respective
logic element.

10. The architecture of claim 1, wherein each logic element
includes two flipflops.

11. A computer architecture, comprising: a plurality of
logic blocks, including: a) a super macroblock (SMB) includ-
ing: 1) at least one macroblock (MB) including: i) at least one
logic element; and ii) at least one random access memory,
wherein one random access memory is associated with each
logic element, and at least as many random access memories
as logic elements are included in the MB; and 2) at least one
random access memory, wherein one random access memory
is associated with each MB, and at least as many random
access memories as MBs are included in the SMB; and b) a
switch matrix; a plurality of switch blocks; and a plurality of
connection blocks.

12. The architecture of claim 11, wherein each connection
block is depopulated and each switch block is populated.

13. The architecture of claim 11, wherein each MB and
SMB further comprises a crossbar to provide communication
between components of the respective MB and SMB,
wherein the crossbar includes a pass transistor.

14. The architecture of claim 11, wherein a multiplexer is
used in each switch matrix to connect to inputs of each SMB.

15. The architecture of claim 11, wherein outputs of each
SMB are connected through long interconnects through tri-
state buffers in the respective switch matrix.

16. The architecture of claim 11, further comprising wire
routing segments of length-1, length-2 and long wires,
wherein length-1 wire segments span one logic block before
connecting to a switch block, length-2 wire segments span
four logic blocks before connecting to a switch block, and
long wire segments traverse and are connected to all logic
blocks in a respective horizontal and vertical path.

17. The architecture of claim 11, further comprising direct
link connections from outputs of each logic block to each of
four immediately neighboring logic blocks.

18. A reconfigurable computer architecture, comprising: a
plurality of logic elements, each logic element including at
least two flip-flops; and at least an equal number of random
access memories, wherein one random access memory is
associated with each logic element to store run-time recon-
figuration bits for the logic element.

#* #* #* #* #*

